Do you want to publish a course? Click here

Non-Gaussianity of Stochastic Gradient Noise

177   0   0.0 ( 0 )
 Added by Abhishek Panigrahi
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

What enables Stochastic Gradient Descent (SGD) to achieve better generalization than Gradient Descent (GD) in Neural Network training? This question has attracted much attention. In this paper, we study the distribution of the Stochastic Gradient Noise (SGN) vectors during the training. We observe that for batch sizes 256 and above, the distribution is best described as Gaussian at-least in the early phases of training. This holds across data-sets, architectures, and other choices.



rate research

Read More

The gradient noise (GN) in the stochastic gradient descent (SGD) algorithm is often considered to be Gaussian in the large data regime by assuming that the classical central limit theorem (CLT) kicks in. This assumption is often made for mathematical convenience, since it enables SGD to be analyzed as a stochastic differential equation (SDE) driven by a Brownian motion. We argue that the Gaussianity assumption might fail to hold in deep learning settings and hence render the Brownian motion-based analyses inappropriate. Inspired by non-Gaussian natural phenomena, we consider the GN in a more general context and invoke the generalized CLT (GCLT), which suggests that the GN converges to a heavy-tailed $alpha$-stable random variable. Accordingly, we propose to analyze SGD as an SDE driven by a L{e}vy motion. Such SDEs can incur `jumps, which force the SDE transition from narrow minima to wider minima, as proven by existing metastability theory. To validate the $alpha$-stable assumption, we conduct extensive experiments on common deep learning architectures and show that in all settings, the GN is highly non-Gaussian and admits heavy-tails. We further investigate the tail behavior in varying network architectures and sizes, loss functions, and datasets. Our results open up a different perspective and shed more light on the belief that SGD prefers wide minima.
Stochastic gradient Markov chain Monte Carlo (SGMCMC) is considered the gold standard for Bayesian inference in large-scale models, such as Bayesian neural networks. Since practitioners face speed versus accuracy tradeoffs in these models, variational inference (VI) is often the preferable option. Unfortunately, VI makes strong assumptions on both the factorization and functional form of the posterior. In this work, we propose a new non-parametric variational approximation that makes no assumptions about the approximate posteriors functional form and allows practitioners to specify the exact dependencies the algorithm should respect or break. The approach relies on a new Langevin-type algorithm that operates on a modified energy function, where parts of the latent variables are averaged over samples from earlier iterations of the Markov chain. This way, statistical dependencies can be broken in a controlled way, allowing the chain to mix faster. This scheme can be further modified in a dropout manner, leading to even more scalability. By implementing the scheme on a ResNet-20 architecture, we obtain better predictive likelihoods and larger effective sample sizes than full SGMCMC.
We study adversary-resilient stochastic distributed optimization, in which $m$ machines can independently compute stochastic gradients, and cooperate to jointly optimize over their local objective functions. However, an $alpha$-fraction of the machines are $textit{Byzantine}$, in that they may behave in arbitrary, adversarial ways. We consider a variant of this procedure in the challenging $textit{non-convex}$ case. Our main result is a new algorithm SafeguardSGD which can provably escape saddle points and find approximate local minima of the non-convex objective. The algorithm is based on a new concentration filtering technique, and its sample and time complexity bounds match the best known theoretical bounds in the stochastic, distributed setting when no Byzantine machines are present. Our algorithm is very practical: it improves upon the performance of all prior methods when training deep neural networks, it is relatively lightweight, and it is the first method to withstand two recently-proposed Byzantine attacks.
We study the generalization properties of the popular stochastic optimization method known as stochastic gradient descent (SGD) for optimizing general non-convex loss functions. Our main contribution is providing upper bounds on the generalization error that depend on local statistics of the stochastic gradients evaluated along the path of iterates calculated by SGD. The key factors our bounds depend on are the variance of the gradients (with respect to the data distribution) and the local smoothness of the objective function along the SGD path, and the sensitivity of the loss function to perturbations to the final output. Our key technical tool is combining the information-theoretic generalization bounds previously used for analyzing randomized variants of SGD with a perturbation analysis of the iterates.
176 - Zeke Xie , Li Yuan , Zhanxing Zhu 2021
It is well-known that stochastic gradient noise (SGN) acts as implicit regularization for deep learning and is essentially important for both optimization and generalization of deep networks. Some works attempted to artificially simulate SGN by injecting random noise to improve deep learning. However, it turned out that the injected simple random noise cannot work as well as SGN, which is anisotropic and parameter-dependent. For simulating SGN at low computational costs and without changing the learning rate or batch size, we propose the Positive-Negative Momentum (PNM) approach that is a powerful alternative to conventional Momentum in classic optimizers. The introduced PNM method maintains two approximate independent momentum terms. Then, we can control the magnitude of SGN explicitly by adjusting the momentum difference. We theoretically prove the convergence guarantee and the generalization advantage of PNM over Stochastic Gradient Descent (SGD). By incorporating PNM into the two conventional optimizers, SGD with Momentum and Adam, our extensive experiments empirically verified the significant advantage of the PNM-based variants over the corresponding conventional Momentum-based optimizers.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا