Do you want to publish a course? Click here

Byzantine-Resilient Non-Convex Stochastic Gradient Descent

112   0   0.0 ( 0 )
 Added by Zeyuan Allen-Zhu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study adversary-resilient stochastic distributed optimization, in which $m$ machines can independently compute stochastic gradients, and cooperate to jointly optimize over their local objective functions. However, an $alpha$-fraction of the machines are $textit{Byzantine}$, in that they may behave in arbitrary, adversarial ways. We consider a variant of this procedure in the challenging $textit{non-convex}$ case. Our main result is a new algorithm SafeguardSGD which can provably escape saddle points and find approximate local minima of the non-convex objective. The algorithm is based on a new concentration filtering technique, and its sample and time complexity bounds match the best known theoretical bounds in the stochastic, distributed setting when no Byzantine machines are present. Our algorithm is very practical: it improves upon the performance of all prior methods when training deep neural networks, it is relatively lightweight, and it is the first method to withstand two recently-proposed Byzantine attacks.



rate research

Read More

Decentralized optimization techniques are increasingly being used to learn machine learning models from data distributed over multiple locations without gathering the data at any one location. Unfortunately, methods that are designed for faultless networks typically fail in the presence of node failures. In particular, Byzantine failures---corresponding to the scenario in which faulty/compromised nodes are allowed to arbitrarily deviate from an agreed-upon protocol---are the hardest to safeguard against in decentralized settings. This paper introduces a Byzantine-resilient decentralized gradient descent (BRIDGE) method for decentralized learning that, when compared to existing works, is more efficient and scalable in higher-dimensional settings and that is deployable in networks having topologies that go beyond the star topology. The main contributions of this work include theoretical analysis of BRIDGE for strongly convex learning objectives and numerical experiments demonstrating the efficacy of BRIDGE for both convex and nonconvex learning tasks.
In this work, we consider the resilience of distributed algorithms based on stochastic gradient descent (SGD) in distributed learning with potentially Byzantine attackers, who could send arbitrary information to the parameter server to disrupt the training process. Toward this end, we propose a new Lipschitz-inspired coordinate-wise median approach (LICM-SGD) to mitigate Byzantine attacks. We show that our LICM-SGD algorithm can resist up to half of the workers being Byzantine attackers, while still converging almost surely to a stationary region in non-convex settings. Also, our LICM-SGD method does not require any information about the number of attackers and the Lipschitz constant, which makes it attractive for practical implementations. Moreover, our LICM-SGD method enjoys the optimal $O(md)$ computational time-complexity in the sense that the time-complexity is the same as that of the standard SGD under no attacks. We conduct extensive experiments to show that our LICM-SGD algorithm consistently outperforms existing methods in training multi-class logistic regression and convolutional neural networks with MNIST and CIFAR-10 datasets. In our experiments, LICM-SGD also achieves a much faster running time thanks to its low computational time-complexity.
In this work, we consider the distributed stochastic optimization problem of minimizing a non-convex function $f(x) = mathbb{E}_{xi sim mathcal{D}} f(x; xi)$ in an adversarial setting, where the individual functions $f(x; xi)$ can also be potentially non-convex. We assume that at most $alpha$-fraction of a total of $K$ nodes can be Byzantines. We propose a robust stochastic variance-reduced gradient (SVRG) like algorithm for the problem, where the batch gradients are computed at the worker nodes (WNs) and the stochastic gradients are computed at the server node (SN). For the non-convex optimization problem, we show that we need $tilde{O}left( frac{1}{epsilon^{5/3} K^{2/3}} + frac{alpha^{4/3}}{epsilon^{5/3}} right)$ gradient computations on average at each node (SN and WNs) to reach an $epsilon$-stationary point. The proposed algorithm guarantees convergence via the design of a novel Byzantine filtering rule which is independent of the problem dimension. Importantly, we capture the effect of the fraction of Byzantine nodes $alpha$ present in the network on the convergence performance of the algorithm.
This paper considers the Byzantine fault-tolerance problem in distributed stochastic gradient descent (D-SGD) method - a popular algorithm for distributed multi-agent machine learning. In this problem, each agent samples data points independently from a certain data-generating distribution. In the fault-free case, the D-SGD method allows all the agents to learn a mathematical model best fitting the data collectively sampled by all agents. We consider the case when a fraction of agents may be Byzantine faulty. Such faulty agents may not follow a prescribed algorithm correctly, and may render traditional D-SGD method ineffective by sharing arbitrary incorrect stochastic gradients. We propose a norm-based gradient-filter, named comparative gradient elimination (CGE), that robustifies the D-SGD method against Byzantine agents. We show that the CGE gradient-filter guarantees fault-tolerance against a bounded fraction of Byzantine agents under standard stochastic assumptions, and is computationally simpler compared to many existing gradient-filters such as multi-KRUM, geometric median-of-means, and the spectral filters. We empirically show, by simulating distributed learning on neural networks, that the fault-tolerance of CGE is comparable to that of existing gradient-filters. We also empirically show that exponential averaging of stochastic gradients improves the fault-tolerance of a generic gradient-filter.
We propose a new algorithm called Parle for parallel training of deep networks that converges 2-4x faster than a data-parallel implementation of SGD, while achieving significantly improved error rates that are nearly state-of-the-art on several benchmarks including CIFAR-10 and CIFAR-100, without introducing any additional hyper-parameters. We exploit the phenomenon of flat minima that has been shown to lead to improved generalization error for deep networks. Parle requires very infrequent communication with the parameter server and instead performs more computation on each client, which makes it well-suited to both single-machine, multi-GPU settings and distributed implementations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا