Do you want to publish a course? Click here

Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to Improve Generalization

177   0   0.0 ( 0 )
 Added by Zeke Xie
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

It is well-known that stochastic gradient noise (SGN) acts as implicit regularization for deep learning and is essentially important for both optimization and generalization of deep networks. Some works attempted to artificially simulate SGN by injecting random noise to improve deep learning. However, it turned out that the injected simple random noise cannot work as well as SGN, which is anisotropic and parameter-dependent. For simulating SGN at low computational costs and without changing the learning rate or batch size, we propose the Positive-Negative Momentum (PNM) approach that is a powerful alternative to conventional Momentum in classic optimizers. The introduced PNM method maintains two approximate independent momentum terms. Then, we can control the magnitude of SGN explicitly by adjusting the momentum difference. We theoretically prove the convergence guarantee and the generalization advantage of PNM over Stochastic Gradient Descent (SGD). By incorporating PNM into the two conventional optimizers, SGD with Momentum and Adam, our extensive experiments empirically verified the significant advantage of the PNM-based variants over the corresponding conventional Momentum-based optimizers.



rate research

Read More

What enables Stochastic Gradient Descent (SGD) to achieve better generalization than Gradient Descent (GD) in Neural Network training? This question has attracted much attention. In this paper, we study the distribution of the Stochastic Gradient Noise (SGN) vectors during the training. We observe that for batch sizes 256 and above, the distribution is best described as Gaussian at-least in the early phases of training. This holds across data-sets, architectures, and other choices.
We study the generalization properties of the popular stochastic optimization method known as stochastic gradient descent (SGD) for optimizing general non-convex loss functions. Our main contribution is providing upper bounds on the generalization error that depend on local statistics of the stochastic gradients evaluated along the path of iterates calculated by SGD. The key factors our bounds depend on are the variance of the gradients (with respect to the data distribution) and the local smoothness of the objective function along the SGD path, and the sensitivity of the loss function to perturbations to the final output. Our key technical tool is combining the information-theoretic generalization bounds previously used for analyzing randomized variants of SGD with a perturbation analysis of the iterates.
We prove the existence of nonnegative martingale solutions to a class of stochastic degenerate-parabolic fourth-order PDEs arising in surface-tension driven thin-film flow influenced by thermal noise. The construction applies to a range of mobilites including the cubic one which occurs under the assumption of a no-slip condition at the liquid-solid interface. Since their introduction more than 15 years ago, by Davidovitch, Moro, and Stone and by Grun, Mecke, and Rauscher, the existence of solutions to stochastic thin-film equations for cubic mobilities has been an open problem, even in the case of sufficiently regular noise. Our proof of global-in-time solutions relies on a careful combination of entropy and energy estimates in conjunction with a tailor-made approximation procedure to control the formation of shocks caused by the nonlinear stochastic scalar conservation law structure of the noise.
Many machine learning problems can be formulated as minimax problems such as Generative Adversarial Networks (GANs), AUC maximization and robust estimation, to mention but a few. A substantial amount of studies are devoted to studying the convergence behavior of their stochastic gradient-type algorithms. In contrast, there is relatively little work on their generalization, i.e., how the learning models built from training examples would behave on test examples. In this paper, we provide a comprehensive generalization analysis of stochastic gradient methods for minimax problems under both convex-concave and nonconvex-nonconcave cases through the lens of algorithmic stability. We establish a quantitative connection between stability and several generalization measures both in expectation and with high probability. For the convex-concave setting, our stability analysis shows that stochastic gradient descent ascent attains optimal generalization bounds for both smooth and nonsmooth minimax problems. We also establish generalization bounds for both weakly-convex-weakly-concave and gradient-dominated problems.
132 - Yunwen Lei , Yiming Ying 2020
Recently there are a considerable amount of work devoted to the study of the algorithmic stability and generalization for stochastic gradient descent (SGD). However, the existing stability analysis requires to impose restrictive assumptions on the boundedness of gradients, strong smoothness and convexity of loss functions. In this paper, we provide a fine-grained analysis of stability and generalization for SGD by substantially relaxing these assumptions. Firstly, we establish stability and generalization for SGD by removing the existing bounded gradient assumptions. The key idea is the introduction of a new stability measure called on-average model stability, for which we develop novel bounds controlled by the risks of SGD iterates. This yields generalization bounds depending on the behavior of the best model, and leads to the first-ever-known fast bounds in the low-noise setting using stability approach. Secondly, the smoothness assumption is relaxed by considering loss functions with Holder continuous (sub)gradients for which we show that optimal bounds are still achieved by balancing computation and stability. To our best knowledge, this gives the first-ever-known stability and generalization bounds for SGD with even non-differentiable loss functions. Finally, we study learning problems with (strongly) convex objectives but non-convex loss functions.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا