Do you want to publish a course? Click here

Spaceborne low-noise single-photon detection for satellite-based quantum communications

241   0   0.0 ( 0 )
 Added by Meng Yang Dr.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single-photon detectors (SPDs) play important roles in highly sensitive detection applications, such as fluorescence spectroscopy, remote sensing and ranging, deep space optical communications, elementary particle detection, and quantum communications. However, the adverse conditions in space, such as the increased radiation flux and thermal vacuum, severely limit their noise performances, reliability, and lifetime. Herein, we present the first example of spaceborne, low-noise, high reliability SPDs, based on commercial off-the-shelf (COTS) silicon avalanche photodiodes (APD). Based on the high noise-radiation sensitivity of silicon APD, we have developed special shielding structures, multistage cooling technologies, and configurable driver electronics that significantly improved the COTS APD reliability and mitigated the SPD noise-radiation sensitivity. This led to a reduction of the expected in-orbit radiation-induced dark count rate (DCR) from ~219 counts per second (cps) per day to ~0.76 cps/day. During a continuous period of continuous operations in orbit which spanned of 1029 days, the SPD DCR was maintained below 1000 cps, i.e., the actual in-orbit radiation-induced DCR increment rate was ~0.54 cps/day, i.e., two orders of magnitude lower than those evoked by previous technologies, while its photon detection efficiency was > 45%. Our spaceborne, low-noise SPDs established a feasible satellite-based up-link quantum communication that was validated on the quantum experiment science satellite platform. Moreover, our SPDs open new windows of opportunities for space research and applications in deep-space optical communications, single-photon laser ranging, as well as for testing the fundamental principles of physics in space.



rate research

Read More

We report operation and characterization of a lab-assembled single-photon detector based on commercial silicon avalanche photodiodes (PerkinElmer C30902SH, C30921SH). Dark count rate as low as 5 Hz was achieved by cooling the photodiodes down to -80 C. While afterpulsing increased as the photodiode temperature was decreased, total afterpulse probability did not become significant due to detectors relatively long deadtime in a passively-quenched scheme. We measured photon detection efficiency higher than 50% at 806 nm.
88 - D Alesini , D Babusci , C Barone 2021
Josephson junctions, in appropriate configurations, can be excellent candidates for detection of single photons in the microwave frequency band. Such possibility has been recently addressed in the framework of galactic axion detection. Here are reported recent developments in the modelling and simulation of dynamic behaviour of a Josephson junction single microwave photon detector. For a Josephson junction to be enough sensitive, small critical currents and operating temperatures of the order of ten of mK are necessary. Thermal and quantum tunnelling out of the zero-voltage state can also mask the detection process. Axion detection would require dark count rates in the order of 0.001 Hz. It is, therefore, is of paramount importance to identify proper device fabrication parameters and junction operation point.
For photon-counting applications at ultraviolet wavelengths, there are currently no detectors that combine high efficiency (> 50%), sub-nanosecond timing resolution, and sub-Hz dark count rates. Superconducting nanowire single-photon detectors (SNSPDs) have seen success over the past decade for photon-counting applications in the near-infrared, but little work has been done to optimize SNSPDs for wavelengths below 400 nm. Here, we describe the design, fabrication, and characterization of UV SNSPDs operating at wavelengths between 250 and 370 nm. The detectors have active areas up to 56 ${mu}$m in diameter, 70 - 80% efficiency, timing resolution down to 60 ps FWHM, blindness to visible and infrared photons, and dark count rates of ~ 0.25 counts/hr for a 56 ${mu}$m diameter pixel. By using the amorphous superconductor MoSi, these UV SNSPDs are also able to operate at temperatures up to 4.2 K. These performance metrics make UV SNSPDs ideal for applications in trapped-ion quantum information processing, lidar studies of the upper atmosphere, UV fluorescent-lifetime imaging microscopy, and photon-starved UV astronomy.
83 - Lixing You 2020
The superconducting nanowire single-photon detector (SNSPD) is a quantum-limit superconducting optical detector based on the Cooper-pair breaking effect by a single photon, which exhibits a higher detection efficiency, lower dark count rate, higher counting rate, and lower timing jitter when compared with those exhibited by its counterparts. SNSPDs have been extensively applied in quantum information processing, including quantum key distribution and optical quantum computation. In this review, we present the requirements of single-photon detectors from quantum information, as well as the principle, key metrics, latest performance issues and other issues associated with SNSPD. The representative applications of SNSPDs with respect to quantum information will also be covered.
Identification of high momentum hadrons at the future EIC is crucial, gaseous RICH detectors are therefore viable option. Compact collider setups impose to construct RICHes with small radiator length, hence significantly limiting the number of detected photons. More photons can be detected in the far UV region, using a windowless RICH approach. QE of CsI degrades under strong irradiation and air contamination. Nanodiamond based photocathodes (PCs) are being developed as an alternative to CsI. Recent development of layers of hydrogenated nanodiamond powders as an alternative photosensitive material and their performance, when coupled to the THick Gaseous Electron Multipliers (THGEM)-based detectors, are the objects of an ongoing R&D. We report about the initial phase of our studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا