No Arabic abstract
Identification of high momentum hadrons at the future EIC is crucial, gaseous RICH detectors are therefore viable option. Compact collider setups impose to construct RICHes with small radiator length, hence significantly limiting the number of detected photons. More photons can be detected in the far UV region, using a windowless RICH approach. QE of CsI degrades under strong irradiation and air contamination. Nanodiamond based photocathodes (PCs) are being developed as an alternative to CsI. Recent development of layers of hydrogenated nanodiamond powders as an alternative photosensitive material and their performance, when coupled to the THick Gaseous Electron Multipliers (THGEM)-based detectors, are the objects of an ongoing R&D. We report about the initial phase of our studies.
The design of a Ring Imaging CHerenkov (RICH) detector for the identification of high momentum particles at the future Electron Ion Collider (EIC) is extremely challenging by using current technology. Compact collider setups impose to construct RICH with short radiator length, hence limiting the number of generated photons. The number of detected photons can be increased by selecting the far UV region. As standard fused-silica windows is opaque below 165 nm, a windowless RICH can be a possible approach. CsI is widely used photocathode (PC) for photon detection in the far UV range. Due to its hygroscopic nature it is very delicate to handle. In addition, its Quantum Efficiency (QE) degrades in high intensity ion fluxes. These are the key reasons to quest for novel PC with sensitivity in the far UV region. Recent development of layers of hydrogenated nanodiamond powders as an alternative PC material and their performance, when coupled to the THick Gaseous Electron Multipliers (THGEM)-based detectors, are the objects of an ongoing R&D. We report here some preliminary results on the initial phase of these studies.
We are developing gaseous photon detectors for Cherenkov imaging applications in the experiments at the future Electron Ion Collider. CsI, converting photons in the far ultraviolet range, is, so far, the only photoconverter compatible with the operation of gaseous detectors. It is very delicate to handle due to its hygroscopic nature: the absorbed water vapour decomposes the CsI molecule. In addition, its quantum efficiency degrades under ion bombardment. These are the key reasons to quest for novel, less delicate materials for photocathodes adequate for gaseous photon detectors. Layers of hydrogenated nanodiamond particles have recently been proposed as an alternative material and have shown promising characteristics. The performance of nanodiamond photocathodes coupled to thick GEM-based detectors is the object of our ongoing R&D. The first phase of these studies includes the characterization of thick GEM coated with nanodiamond layers and the robustness of its photoconverting properties with respect to the bombardment by ions from the multiplication process in the gaseous detector. The approach is described in detail as well as all the results obtained so far within these exploratory studies.
The architecture of the novel MPGD-based photon detectors of COMPASS RICH-1 consists in a large-size hybrid MPGD multilayer layout combining two layers of Thick-GEMs and a bulk resistive MICROMEGAS. Concerning biasing voltage, the Thick-GEMs are segmented in order to reduce the energy released in case of occasional discharges, while the MICROMEGAS anode is segmented in pads individually biased at positive voltage, while the micromesh is grounded. In total, there are ten different electrode types and more than 20000 electrodes supplied by more than 100 HV channels. Commercial power supply units are used. The original elements of the power supply system are the architecture of the voltage distribution net, the compensation, by voltage adjustment, of the effects of pressure and temperature variation affecting the detector gain and a sophisticated control software, which allows to protect the detectors against errors by the operator, to monitor and log voltages and current at 1 Hz rate and to automatically react to detector misbehaviors. The HV system and its performance are described in detail as well as the electrical stability of the detector during the operation at COMPASS.
Electroluminescence produced during avalanche development in gaseous avalanche detectors is an useful information for triggering, calorimetry and tracking in gaseous detectors. Noble gases present high electroluminescence yields, emitting mainly in the VUV region. The photons can provide signal readout if appropriate photosensors are used. Micropattern gaseous detectors are good candidates for signal amplification in high background and/or low rate experiments due to their high electroluminescence yields and radiopurity. In this work, the VUV light responses of the Gas Electron Multiplier and of the Micro-Hole Strip Plate, working with pure xenon, are simulated and studied in detail using a new and versatile C++ toolkit. It is shown that the solid angle subtended by a photosensor placed below the microstructures depends on the operating conditions. The obtained absolute EL yields, determined for different gas pressures and as functions of the applied voltage, are compared with those determined experimentally.
A Set of new MPGD-based Photon Detectors is being built for the upgrade of COMPASS RICH-1. The detectors cover a total active area of 1.4 m$^2$ and are based on a hybrid architecture consisting of two THGEM layers and a Micromegas. A CsI film on one THGEM acts as a reflective photocathode. The characteristics of the detector, the production of the components and their validation tests are described in detail.