No Arabic abstract
Entangled embedded periodic nets and crystal frameworks are defined, along with their dimension type, homogeneity type, adjacency depth and periodic isotopy type. We obtain periodic isotopy classifications for various families of embedded nets with small quotient graphs. We enumerate the 25 periodic isotopy classes of depth 1 embedded nets with a single vertex quotient graph. Additionally, we classify embeddings of n-fold copies of pcu with all connected components in a parallel orientation and n vertices in a repeat unit, and determine their maximal symmetry periodic isotopes. We also introduce the methodology of linear graph knots on the flat 3-torus [0, 1)^3. These graph knots, with linear edges, are spatial embeddings of the labelled quotient graphs of an embedded net which are associated with its periodicity bases.
We show that in a prime, closed, oriented 3-manifold M, equivalent knots are isotopic if and only if the orientation preserving mapping class group is trivial. In the case of irreducible, closed, oriented $3$-manifolds we show the more general fact that every orientation preserving homeomorphism which preserves free homotopy classes of loops is isotopic to the identity. In the case of $S^1times S^2$, we give infinitely many examples of knots whose isotopy classes are changed by the Gluck twist.
An elementary stabilization of a Legendrian link $L$ in the spherical cotangent bundle $ST^*M$ of a surface $M$ is a surgery that results in attaching a handle to $M$ along two discs away from the image in $M$ of the projection of the link $L$. A virtual Legendrian isotopy is a composition of stabilizations, destabilizations and Legendrian isotopies. In contrast to Legendrian knots, virtual Legendrian knots enjoy the property that there is a bijective correspondence between the virtual Legendrian knots and the equivalence classes of Gauss diagrams. We study virtual Legendrian isotopy classes of Legendrian links and show that every such class contains a unique irreducible representative. In particular we get a solution to the following conjecture of Cahn, Levi and the first author: two Legendrian knots in $ST^*S^2$ that are isotopic as virtual Legendrian knots must be Legendrian isotopic in $ST^*S^2.$
In this article we describe the summit sets in B_3, the smallest element in a summit set and we compute the Hilbert series corresponding to conjugacy classes.The results will be related to Birman-Menesco classification of knots with braid index three or less than three.
We obtain a criterion for approximability by embeddings of piecewise linear maps of a circle to the plane, analogous to the one proved by Minc for maps of a segment to the plane. Theorem. Let S be a triangulation of a circle with s vertices. Let f be a simplicial map of the graph S to the plane. The map f is approximable by embeddings if and only if for each i=0,...,s the i-th derivative of the map f (defined by Minc) neither contains transversal self-intersections nor is the standard winding of degree greater than 1. We deduce from the Minc result the completeness of the van Kampen obstruction to approximability by embeddings of piecewise linear maps of a segment to the plane. We also generalize these criteria to simplicial maps of a graph without vertices of degree >3 to a circle.
In this article we show that every closed orientable smooth $4$--manifold admits a smooth embedding in the complex projective $3$--space.