Do you want to publish a course? Click here

On approximability by embeddings of cycles in the plane

156   0   0.0 ( 0 )
 Added by Mikhail Skopenkov
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We obtain a criterion for approximability by embeddings of piecewise linear maps of a circle to the plane, analogous to the one proved by Minc for maps of a segment to the plane. Theorem. Let S be a triangulation of a circle with s vertices. Let f be a simplicial map of the graph S to the plane. The map f is approximable by embeddings if and only if for each i=0,...,s the i-th derivative of the map f (defined by Minc) neither contains transversal self-intersections nor is the standard winding of degree greater than 1. We deduce from the Minc result the completeness of the van Kampen obstruction to approximability by embeddings of piecewise linear maps of a segment to the plane. We also generalize these criteria to simplicial maps of a graph without vertices of degree >3 to a circle.



rate research

Read More

Entangled embedded periodic nets and crystal frameworks are defined, along with their dimension type, homogeneity type, adjacency depth and periodic isotopy type. We obtain periodic isotopy classifications for various families of embedded nets with small quotient graphs. We enumerate the 25 periodic isotopy classes of depth 1 embedded nets with a single vertex quotient graph. Additionally, we classify embeddings of n-fold copies of pcu with all connected components in a parallel orientation and n vertices in a repeat unit, and determine their maximal symmetry periodic isotopes. We also introduce the methodology of linear graph knots on the flat 3-torus [0, 1)^3. These graph knots, with linear edges, are spatial embeddings of the labelled quotient graphs of an embedded net which are associated with its periodicity bases.
Given a space X we study the topology of the space of embeddings of X into $mathbb{R}^d$ through the combinatorics of triangulations of X. We give a simple combinatorial formula for upper bounds for the largest dimension of a sphere that antipodally maps into the space of embeddings. This result summarizes and extends results about the nonembeddability of complexes into $mathbb{R}^d$, the nonexistence of nonsingular bilinear maps, and the study of embeddings into $mathbb{R}^d$ up to isotopy, such as the chirality of spatial graphs.
55 - C. Bohr , B. Hanke , D. Kotschick 2000
We give explicit examples of degree 3 cohomology classes not Poincare dual to submanifolds, and discuss the realisability of homology classes by submanifolds with Spin-C normal bundles.
For a knot diagram we introduce an operation which does not increase the genus of the diagram and does not change its representing knot type. We also describe a condition for this operation to certainly decrease the genus. The proof involves the study of a relation between the genus of a virtual knot diagram and the genus of a knotoid diagram, the former of which has been introduced by Stoimenow, Tchernov and Vdovina, and the latter by Turaev recently. Our operation has a simple interpretation in terms of Gauss codes and hence can easily be computer-implemented.
We introduce the Voronoi functional of a triangulation of a finite set of points in the Euclidean plane and prove that among all geometric triangulations of the point set, the Delaunay triangulation maximizes the functional. This result neither extends to topological triangulations in the plane nor to geometric triangulations in three and higher dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا