Do you want to publish a course? Click here

Demisability and survivability sensitivity to design-for-demise techniques

106   0   0.0 ( 0 )
 Added by Mirko Trisolini
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The paper is concerned with examining the effects that design-for-demise solutions can have not only on the demisability of components, but also on their survivability that is their capability to withstand impacts from space debris. First two models are introduced. A demisability model to predict the behaviour of spacecraft components during the atmospheric re-entry and a survivability model to assess the vulnerability of spacecraft structures against space debris impacts. Two indices that evaluate the level of demisability and survivability are also proposed. The two models are then used to study the sensitivity of the demisability and of the survivability indices as a function of typical design-for-demise options. The demisability and the survivability can in fact be influenced by the same design parameters in a competing fashion that is while the demisability is improved, the survivability is worsened and vice versa. The analysis shows how the design-for-demise solutions influence the demisability and the survivability independently. In addition, the effect that a solution has simultaneously on the two criteria is assessed. Results shows which, among the design-for-demise parameters mostly influence the demisability and the survivability. For such design parameters maps are presented, describing their influence on the demisability and survivability indices. These maps represent a useful tool to quickly assess the level of demisability and survivability that can be expected from a component, when specific design parameters are changed.



rate research

Read More

Among the mitigation measures introduced to cope with the space debris issue there is the de-orbiting of decommissioned satellites. Guidelines for re-entering objects call for a ground casualty risk no higher than 0.0001. To comply with this requirement, satellites can be designed through a design-for-demise philosophy. Still, a spacecraft designed to demise has to survive the debris-populated space environment for many years. The demisability and the survivability of a satellite can both be influenced by a set of common design choices such as the material selection, the geometry definition, and the position of the components. Within this context, two models have been developed to analyse the demise and the survivability of satellites. Given the competing nature of the demisability and the survivability, a multi-objective optimisation framework was developed, with the aim to identify trade-off solutions for the preliminary design of satellites. As the problem is nonlinear and involves the combination of continuous and discrete variables, classical derivative based approaches are unsuited and a genetic algorithm was selected instead. The genetic algorithm uses the developed demisability and survivability criteria as the fitness functions of the multi-objective algorithm. The paper presents a test case, which considers the preliminary optimisation of tanks in terms of material, geometry, location, and number of tanks for a representative Earth observation mission. The configuration of the external structure of the spacecraft is fixed. Tanks were selected because they are sensitive to both design requirements: they represent critical components in the demise process and impact damage can cause the loss of the mission because of leaking and ruptures. The results present the possible trade off solutions, constituting the Pareto front obtained from the multi-objective optimisation.
The recently discovered first high velocity hyperbolic objects passing through the Solar System, 1I/Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Interstellar objects likely formed very far from the solar system in both time and space; their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system.
58 - B. Lavraud 2019
The Active Monitor Box of Electrostatic Risks (AMBER) is a double-head thermal electron and ion electrostatic analyzer (energy range 0-30 keV) that was launched onboard the Jason-3 spacecraft in 2016. The next generation AMBER instrument, for which a first prototype was developed and then calibrated at the end of 2017, constitutes a significant evolution that is based on a single head to measure both species alternatively. The instrument developments focused on several new subsystems (front-end electronics, high-voltage electronics, mechanical design) that permit to reduce instrument resources down to ~ 1 kg and 1.5 W. AMBER is designed as a generic radiation monitor with a twofold purpose: (1) measure magnetospheric thermal ion and electron populations in the range 0-35 keV, with significant scientific potential (e.g., plasmasphere, ring current, plasma sheet), and (2) monitor spacecraft electrostatic charging and the plasma populations responsible for it, for electromagnetic cleanliness and operational purposes.
Launching a starshade to rendezvous with the Nancy Grace Roman Space Telescope would provide the first opportunity to directly image the habitable zones of nearby sunlike stars in the coming decade. A report on the science and feasibility of such a m ission was recently submitted to NASA as a probe study concept. The driving objective of the concept is to determine whether Earth-like exoplanets exist in the habitable zones of the nearest sunlike stars and have biosignature gases in their atmospheres. With the sensitivity provided by this telescope, it is possible to measure the brightness of zodiacal dust disks around the nearest sunlike stars and establish how their population compares to our own. In addition, known gas-giant exoplanets can be targeted to measure their atmospheric metallicity and thereby determine if the correlation with planet mass follows the trend observed in the Solar System and hinted at by exoplanet transit spectroscopy data. In this paper we provide the details of the calculations used to estimate the sensitivity of Roman with a starshade and describe the publicly available Python-based source code used to make these calculations. Given the fixed capability of Roman and the constrained observing windows inherent for the starshade, we calculate the sensitivity of the combined observatory to detect these three types of targets and we present an overall observing strategy that enables us to achieve these objectives.
In order for off-Earth top surface structures built from regolith to protect astronauts from radiation, they need to be several meters thick. Technical University Delft (TUD) proposes to excavate into the ground to create subsurface habitats. By excavating not only natural protection from radiation can be achieved but also thermal insulation because the temperature is more stable underground. At the same time through excavation valuable resources can be mined for through in situ resource utilization (ISRU). The idea is that a swarm of autonomous mobile robots excavate the ground in a sloped downwards spiral movement. The excavated regolith will be mixed with cement, which can be reproduced on Mars through ISRU, in order to create concrete. The concrete is 3D printed/sprayed on the excavated tunnel to reinforce it. As soon as the tunnels are reinforced, the material in-between the tunnels can be removed in order to create a larger cavity that can be used for inhabitation. Proposed approach relies on Design-to-Robotic-Production (D2RP) technology developed at TUD1 for on-Earth applications. The rhizomatic 3D printed structure is a structurally optimized porous shell structure with increased insulation properties. In order to regulate the indoor pressurised environment an inflatable structure is placed in the 3D printed cavity. This inflatable structure is made of materials, which can also be at some point reproduced on Mars through ISRU. Depending on location the habitat and the production system are powered by a system combining solar and kite power. The ultimate goal is to develop an autarkic D2RP system for building subsurface autarkic habitats on Mars from locally obtained materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا