Do you want to publish a course? Click here

Topological Spin Liquids: Robustness under perturbations

93   0   0.0 ( 0 )
 Added by Norbert Schuch
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the robustness of the paradigmatic kagome Resonating Valence Bond (RVB) spin liquid and its orthogonal version, the quantum dimer model. The non-orthogonality of singlets in the RVB model and the induced finite length scale not only makes it difficult to analyze, but can also significantly affect its physics, such as how much noise resilience it exhibits. Surprisingly, we find that this is not the case: The amount of perturbations which the RVB spin liquid can tolerate is not affected by the finite correlation length, making the dimer model a viable model for studying RVB physics under perturbations. Remarkably, we find that this is a universal phenomenon protected by symmetries: First, the dominant correlations in the RVB are spinon correlations, making the state robust against doping with visons. Second, reflection symmetry stabilizes the spin liquid against doping with spinons, by forbidding mixing of the initially dominant correlations with those which lead to the breakdown of topological order.



rate research

Read More

We use the topological entanglement entropy (TEE) as an efficient tool to fully characterize the Abelian phase of a $mathbb{Z}_2 times mathbb{Z}_2$ spin liquid emerging as the ground state of topological color code (TCC), which is a class of stabilizer states on the honeycomb lattice. We provide the fusion rules of the quasiparticle (QP) excitations of the model by introducing single- or two-body operators on physical spins for each fusion process which justify the corresponding fusion outcome. Beside, we extract the TEE from Renyi entanglement entropy (EE) of the TCC, analytically and numerically by finite size exact diagonalization on the disk shape regions with contractible boundaries. We obtain that the EE has a local contribution, which scales linearly with the boundary length in addition to a topological term, i.e. the TEE, arising from the condensation of closed strings in the ground state. We further investigate the ground state dependence of the TEE on regions with non-contractible boundaries, i.e. by cutting the torus to half cylinders, from which we further identify multiple independent minimum entropy states (MES) of the TCC and then extract the U and S modular matrices of the system, which contain the self and mutual statistics of the anyonic QPs and fully characterize the topological phase of the TCC. Eventually, we show that, in spite of the lack of a local order parameter, TEE and other physical quantities obtained from ground state wave function such as entanglement spectrum (ES) and ground state fidelity are sensitive probes to study the robustness of a topological phase. We find that the topological order in the presence of a magnetic field persists until the vicinity of the transition point, where the TEE and fidelity drops to zero and the ES splits severely, signaling breakdown of the topological phase of the TCC.
153 - Claudio Chamon , Dmitry Green , 2019
We introduce the notion of combinatorial gauge symmetry -- a local transformation that includes single spin rotations plus permutations of spins (or swaps of their quantum states) -- that preserve the commutation and anti-commutation relations among the spins. We show that Hamiltonians with simple two-body interactions contain this symmetry if the coupling matrix is a Hadamard matrix, with the combinatorial gauge symmetry being associated to the automorphism of these matrices with respect to monomial transformations. Armed with this symmetry, we address the physical problem of how to build quantum spin liquids with physically accessible interactions. In addition to its intrinsic physical significance, the problem is also tied to that of how to build topological qubits.
We study the dynamics of a localized spin-1/2 driven by a time-periodic magnetic field that undergoes a topological transition. Despite the strongly non-adiabatic effects dominating the spin dynamics, we find that the fields topology appears clearly imprinted in the Floquet spin states through an effective Berry phase emerging in the quasienergy. This has remarkable consequences on the spin resonance condition suggesting a whole new class of experiments to spot topological transitions in the dynamics of spins and other two-level systems, from nuclear magnetic resonance to strongly-driven superconducting qubits.
Coulomb spin liquids are topological magnetic states obeying an emergent Gauss law. Little distinction has been made between different kinds of Coulomb liquids. Here we show how a series of distinct Coulomb liquids can be generated straightforwardly by varying the constraints on a classical spin system. This leads to pair creation, and coalescence, of topological defects of an underlying vector field. The latter makes higher-rank spin liquids, of recent interest in the context of fracton theories, with attendant multi-fold pinch points in the structure factor, appear naturally. New Coulomb liquids with an abundance of pinch points also arise. We thus establish a new and general route to uncovering exotic Coulomb liquids, via the manipulation of topological defects in momentum space.
We study the response of critical Resonating Valence Bond (RVB) spin liquids to doping with longer-range singlets, and more generally of U(1)-symmetric tensor networks to non-symmetric perturbations. Using a field theory description, we find that in the RVB, doping constitutes a relevant perturbation which immediately opens up a gap, contrary to previous observations. Our analysis predicts a very large correlation length even at significant doping, which we verify using high-accuracy numerical simulations. This emphasizes the need for careful analysis, but also justifies the use of such states as a variational ansatz for critical systems. Finally, we give an example of a PEPS where non-symmetric perturbations do not open up a gap and the U(1) symmetry re-emerges.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا