We study the dynamics of a localized spin-1/2 driven by a time-periodic magnetic field that undergoes a topological transition. Despite the strongly non-adiabatic effects dominating the spin dynamics, we find that the fields topology appears clearly imprinted in the Floquet spin states through an effective Berry phase emerging in the quasienergy. This has remarkable consequences on the spin resonance condition suggesting a whole new class of experiments to spot topological transitions in the dynamics of spins and other two-level systems, from nuclear magnetic resonance to strongly-driven superconducting qubits.
The bulk-edge correspondence guarantees that the interface between two topologically distinct insulators supports at least one topological edge state that is robust against static perturbations. Here, we address the question of how dynamic perturbations of the interface affect the robustness of edge states. We illuminate the limits of topological protection for Floquet systems in the special case of a static bulk. We use two independent dynamic quantum simulators based on coupled plasmonic and dielectric photonic waveguides to implement the topological Su-Schriefer-Heeger model with convenient control of the full space- and time-dependence of the Hamiltonian. Local time periodic driving of the interface does not change the topological character of the system but nonetheless leads to dramatic changes of the edge state, which becomes rapidly depopulated in a certain frequency window. A theoretical Floquet analysis shows that the coupling of Floquet replicas to the bulk bands is responsible for this effect. Additionally, we determine the depopulation rate of the edge state and compare it to numerical simulations.
Traditional approaches to controlling single spins in quantum dots require the generation of large electromagnetic fields to drive many Rabi oscillations within the spin coherence time. We demonstrate flopping-mode electric dipole spin resonance, where an electron is electrically driven in a Si/SiGe double quantum dot in the presence of a large magnetic field gradient. At zero detuning, charge delocalization across the double quantum dot enhances coupling to the drive field and enables low power electric dipole spin resonance. Through dispersive measurements of the single electron spin state, we demonstrate a nearly three order of magnitude improvement in driving efficiency using flopping-mode resonance, which should facilitate low power spin control in quantum dot arrays.
We study the robustness of the paradigmatic kagome Resonating Valence Bond (RVB) spin liquid and its orthogonal version, the quantum dimer model. The non-orthogonality of singlets in the RVB model and the induced finite length scale not only makes it difficult to analyze, but can also significantly affect its physics, such as how much noise resilience it exhibits. Surprisingly, we find that this is not the case: The amount of perturbations which the RVB spin liquid can tolerate is not affected by the finite correlation length, making the dimer model a viable model for studying RVB physics under perturbations. Remarkably, we find that this is a universal phenomenon protected by symmetries: First, the dominant correlations in the RVB are spinon correlations, making the state robust against doping with visons. Second, reflection symmetry stabilizes the spin liquid against doping with spinons, by forbidding mixing of the initially dominant correlations with those which lead to the breakdown of topological order.
We report the observation of multiple harmonic generation in electric dipole spin resonance in an InAs nanowire double quantum dot. The harmonics display a remarkable detuning dependence: near the interdot charge transition as many as eight harmonics are observed, while at large detunings we only observe the fundamental spin resonance condition. The detuning dependence indicates that the observed harmonics may be due to Landau-Zener transition dynamics at anticrossings in the energy level spectrum.
In spin-based quantum information processing devices, the presence of control and detection circuitry can change the local environment of a spin by introducing strain and electric fields, altering its resonant frequencies. These resonance shifts can be large compared to intrinsic spin line-widths and it is therefore important to study, understand and model such effects in order to better predict device performance. Here we investigate a sample of bismuth donor spins implanted in a silicon chip, on top of which a superconducting aluminium micro-resonator has been fabricated. The on-chip resonator provides two functions: first, it produces local strain in the silicon due to the larger thermal contraction of the aluminium, and second, it enables sensitive electron spin resonance spectroscopy of donors close to the surface that experience this strain. Through finite-element strain simulations we are able to reconstruct key features of our experiments, including the electron spin resonance spectra. Our results are consistent with a recently discovered mechanism for producing shifts of the hyperfine interaction for donors in silicon, which is linear with the hydrostatic component of an applied strain.