Do you want to publish a course? Click here

Central limit theorem for mesoscopic eigenvalue statistics of deformed Wigner matrices and sample covariance matrices

134   0   0.0 ( 0 )
 Added by Yuanyuan Xu
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We consider $N$ by $N$ deformed Wigner random matrices of the form $X_N=H_N+A_N$, where $H_N$ is a real symmetric or complex Hermitian Wigner matrix and $A_N$ is a deterministic real bounded diagonal matrix. We prove a universal Central Limit Theorem for the linear eigenvalue statistics of $X_N$ for all mesoscopic scales both in the spectral bulk and at regular edges where the global eigenvalue density vanishes as a square root. The method relies on the characteristic function method in [47], local laws for the Green function of $X_N$ in [3, 46, 51] and analytic subordination properties of the free additive convolution [24, 41]. We also prove the analogous results for high-dimensional sample covariance matrices.



rate research

Read More

We consider random matrices of the form $H_N=A_N+U_N B_N U^*_N$, where $A_N$, $B_N$ are two $N$ by $N$ deterministic Hermitian matrices and $U_N$ is a Haar distributed random unitary matrix. We establish a universal Central Limit Theorem for the linear eigenvalue statistics of $H_N$ on all mesoscopic scales inside the regular bulk of the spectrum. The proof is based on studying the characteristic function of the linear eigenvalue statistics, and consists of two main steps: (1) generating Ward identities using the left-translation-invariance of the Haar measure, along with a local law for the resolvent of $H_N$ and analytic subordination properties of the free additive convolution, allow us to derive an explicit formula for the derivative of the characteristic function; (2) a local law for two-point product functions of resolvents is derived using a partial randomness decomposition of the Haar measure. We also prove the corresponding results for orthogonal conjugations.
In this paper, we explain the dependance of the fluctuations of the largest eigenvalues of a Deformed Wigner model with respect to the eigenvectors of the perturbation matrix. We exhibit quite general situations that will give rise to universality or non universality of the fluctuations.
157 - Jianfeng Yao , Wangjun Yuan 2020
In this article, we establish a limiting distribution for eigenvalues of a class of auto-covariance matrices. The same distribution has been found in the literature for a regularized version of these auto-covariance matrices. The original non-regularized auto-covariance matrices are non invertible which introduce supplementary diffculties for the study of their eigenvalues through Girkos Hermitization scheme. The key result in this paper is a new polynomial lower bound for the least singular value of the resolvent matrices associated to a rank-defective quadratic function of a random matrix with independent and identically distributed entries. Another improvement in the paper is that the lag of the auto-covariance matrices can grow to infinity with the matrix dimension.
We establish a quantitative version of the Tracy--Widom law for the largest eigenvalue of high dimensional sample covariance matrices. To be precise, we show that the fluctuations of the largest eigenvalue of a sample covariance matrix $X^*X$ converge to its Tracy--Widom limit at a rate nearly $N^{-1/3}$, where $X$ is an $M times N$ random matrix whose entries are independent real or complex random variables, assuming that both $M$ and $N$ tend to infinity at a constant rate. This result improves the previous estimate $N^{-2/9}$ obtained by Wang [73]. Our proof relies on a Green function comparison method [27] using iterative cumulant expansions, the local laws for the Green function and asymptotic properties of the correlation kernel of the white Wishart ensemble.
This paper investigates the central limit theorem for linear spectral statistics of high dimensional sample covariance matrices of the form $mathbf{B}_n=n^{-1}sum_{j=1}^{n}mathbf{Q}mathbf{x}_jmathbf{x}_j^{*}mathbf{Q}^{*}$ where $mathbf{Q}$ is a nonrandom matrix of dimension $ptimes k$, and ${mathbf{x}_j}$ is a sequence of independent $k$-dimensional random vector with independent entries, under the assumption that $p/nto y>0$. A key novelty here is that the dimension $kge p$ can be arbitrary, possibly infinity. This new model of sample covariance matrices $mathbf{B}_n$ covers most of the known models as its special cases. For example, standard sample covariance matrices are obtained with $k=p$ and $mathbf{Q}=mathbf{T}_n^{1/2}$ for some positive definite Hermitian matrix $mathbf{T}_n$. Also with $k=infty$ our model covers the case of repeated linear processes considered in recent high-dimensional time series literature. The CLT found in this paper substantially generalizes the seminal CLT in Bai and Silverstein (2004). Applications of this new CLT are proposed for testing the structure of a high-dimensional covariance matrix. The derived tests are then used to analyse a large fMRI data set regarding its temporary correlation structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا