Do you want to publish a course? Click here

Central limit theorem for mesoscopic eigenvalue statistics of the free sum of matrices

196   0   0.0 ( 0 )
 Added by Yuanyuan Xu
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider random matrices of the form $H_N=A_N+U_N B_N U^*_N$, where $A_N$, $B_N$ are two $N$ by $N$ deterministic Hermitian matrices and $U_N$ is a Haar distributed random unitary matrix. We establish a universal Central Limit Theorem for the linear eigenvalue statistics of $H_N$ on all mesoscopic scales inside the regular bulk of the spectrum. The proof is based on studying the characteristic function of the linear eigenvalue statistics, and consists of two main steps: (1) generating Ward identities using the left-translation-invariance of the Haar measure, along with a local law for the resolvent of $H_N$ and analytic subordination properties of the free additive convolution, allow us to derive an explicit formula for the derivative of the characteristic function; (2) a local law for two-point product functions of resolvents is derived using a partial randomness decomposition of the Haar measure. We also prove the corresponding results for orthogonal conjugations.



rate research

Read More

We consider $N$ by $N$ deformed Wigner random matrices of the form $X_N=H_N+A_N$, where $H_N$ is a real symmetric or complex Hermitian Wigner matrix and $A_N$ is a deterministic real bounded diagonal matrix. We prove a universal Central Limit Theorem for the linear eigenvalue statistics of $X_N$ for all mesoscopic scales both in the spectral bulk and at regular edges where the global eigenvalue density vanishes as a square root. The method relies on the characteristic function method in [47], local laws for the Green function of $X_N$ in [3, 46, 51] and analytic subordination properties of the free additive convolution [24, 41]. We also prove the analogous results for high-dimensional sample covariance matrices.
We introduce a method for the comparison of some extremal eigenvalue statistics of random matrices. For example, it allows one to compare the maximal eigenvalue gap in the bulk of two generalized Wigner ensembles, provided that the first four moments of their matrix entries match. As an application, we extend results of Bourgade--Ben Arous and Feng--Wei that identify the limit of the maximal eigenvalue gap in the bulk of the GUE to all complex Hermitian generalized Wigner matrices.
125 - Alice Guionnet 2018
In this paper, we consider the addition of two matrices in generic position, namely A + U BU * , where U is drawn under the Haar measure on the unitary or the orthogonal group. We show that, under mild conditions on the empirical spectral measures of the deterministic matrices A and B, the law of the largest eigenvalue satisfies a large deviation principle, in the scale N, with an explicit rate function involving the limit of spherical integrals. We cover in particular all the cases when A and B have no outliers.
We analyze the largest eigenvalue statistics of m-dependent heavy-tailed Wigner matrices as well as the associated sample covariance matrices having entry-wise regularly varying tail distributions with parameter $0<alpha<4$. Our analysis extends results in the previous literature for the corresponding random matrices with independent entries above the diagonal, by allowing for m-dependence between the entries of a given matrix. We prove that the limiting point process of extreme eigenvalues is a Poisson cluster process.
Under the Kolmogorov--Smirnov metric, an upper bound on the rate of convergence to the Gaussian distribution is obtained for linear statistics of the matrix ensembles in the case of the Gaussian, Laguerre, and Jacobi weights. The main lemma gives an estimate for the characteristic functions of the linear statistics; this estimate is uniform over the growing interval. The proof of the lemma relies on the Riemann--Hilbert approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا