Do you want to publish a course? Click here

Convergence rate to the Tracy--Widom laws for the largest eigenvalue of sample covariance matrices

115   0   0.0 ( 0 )
 Added by Yuanyuan Xu
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We establish a quantitative version of the Tracy--Widom law for the largest eigenvalue of high dimensional sample covariance matrices. To be precise, we show that the fluctuations of the largest eigenvalue of a sample covariance matrix $X^*X$ converge to its Tracy--Widom limit at a rate nearly $N^{-1/3}$, where $X$ is an $M times N$ random matrix whose entries are independent real or complex random variables, assuming that both $M$ and $N$ tend to infinity at a constant rate. This result improves the previous estimate $N^{-2/9}$ obtained by Wang [73]. Our proof relies on a Green function comparison method [27] using iterative cumulant expansions, the local laws for the Green function and asymptotic properties of the correlation kernel of the white Wishart ensemble.



rate research

Read More

We study the asymptotic distributions of the spiked eigenvalues and the largest nonspiked eigenvalue of the sample covariance matrix under a general covariance matrix model with divergent spiked eigenvalues, while the other eigenvalues are bounded but otherwise arbitrary. The limiting normal distribution for the spiked sample eigenvalues is established. It has distinct features that the asymptotic mean relies on not only the population spikes but also the nonspikes and that the asymptotic variance in general depends on the population eigenvectors. In addition, the limiting Tracy-Widom law for the largest nonspiked sample eigenvalue is obtained. Estimation of the number of spikes and the convergence of the leading eigenvectors are also considered. The results hold even when the number of the spikes diverges. As a key technical tool, we develop a Central Limit Theorem for a type of random quadratic forms where the random vectors and random matrices involved are dependent. This result can be of independent interest.
We consider a $p$-dimensional time series where the dimension $p$ increases with the sample size $n$. The resulting data matrix $X$ follows a stochastic volatility model: each entry consists of a positive random volatility term multiplied by an independent noise term. The volatility multipliers introduce dependence in each row and across the rows. We study the asymptotic behavior of the eigenvalues and eigenvectors of the sample covariance matrix $XX$ under a regular variation assumption on the noise. In particular, we prove Poisson convergence for the point process of the centered and normalized eigenvalues and derive limit theory for functionals acting on them, such as the trace. We prove related results for stochastic volatility models with additional linear dependence structure and for stochastic volatility models where the time-varying volatility terms are extinguished with high probability when $n$ increases. We provide explicit approximations of the eigenvectors which are of a strikingly simple structure. The main tools for proving these results are large deviation theorems for heavy-tailed time series, advocating a unified approach to the study of the eigenstructure of heavy-tailed random matrices.
We study point process convergence for sequences of iid random walks. The objective is to derive asymptotic theory for the extremes of these random walks. We show convergence of the maximum random walk to the Gumbel distribution under the existence of a $(2+delta)$th moment. We make heavily use of precise large deviation results for sums of iid random variables. As a consequence, we derive the joint convergence of the off-diagonal entries in sample covariance and correlation matrices of a high-dimensional sample whose dimension increases with the sample size. This generalizes known results on the asymptotic Gumbel property of the largest entry.
We give a new proof of the classical Central Limit Theorem, in the Mallows ($L^r$-Wasserstein) distance. Our proof is elementary in the sense that it does not require complex analysis, but rather makes use of a simple subadditive inequality related to this metric. The key is to analyse the case where equality holds. We provide some results concerning rates of convergence. We also consider convergence to stable distributions, and obtain a bound on the rate of such convergence.
We consider $N$ by $N$ deformed Wigner random matrices of the form $X_N=H_N+A_N$, where $H_N$ is a real symmetric or complex Hermitian Wigner matrix and $A_N$ is a deterministic real bounded diagonal matrix. We prove a universal Central Limit Theorem for the linear eigenvalue statistics of $X_N$ for all mesoscopic scales both in the spectral bulk and at regular edges where the global eigenvalue density vanishes as a square root. The method relies on the characteristic function method in [47], local laws for the Green function of $X_N$ in [3, 46, 51] and analytic subordination properties of the free additive convolution [24, 41]. We also prove the analogous results for high-dimensional sample covariance matrices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا