No Arabic abstract
Microwave photonic systems are compelling for their ability to process signals at high frequencies and over extremely wide bandwidths as a basis for next generation communication and radar technologies. However, many applications also require narrow-band $(simtext{MHz})$ filtering operations that are challenging to implement using optical filtering techniques, as this requires reliable integration of ultra-high quality factor $(sim 10^8)$ optical resonators. One way to address this challenge is to utilize long-lived acoustic resonances, taking advantage of their narrow-band frequency response to filter microwave signals. In this paper, we examine new strategies to harness a narrow-band acoustic response within a microwave-photonic signal processing platform through use of light-sound coupling. Our signal processing scheme is based on a recently demonstrated photon-phonon emitter-receiver device, which transfers information between the optical and acoustic domains using Brillouin interactions, and produces narrow-band filtering of a microwave signal. To understand the best way to use this device technology, we study the properties of a microwave-photonic link using this filtering scheme. We theoretically analyze the noise characteristics of this microwave-photonic link, and explore the parameter space for the design and optimization of such systems.
We grow accustomed to the notion that optical susceptibilities can be treated as a local property of a medium. In the context of nonlinear optics, both Kerr and Raman processes are considered local, meaning that optical fields at one location do not produce a nonlinear response at distinct locations in space. This is because the electronic and phononic disturbances produced within the material are confined to a region that is smaller than an optical wavelength. By comparison, Brillouin interactions can result in a highly nonlocal nonlinear response, as the elastic waves generated through the Brillouin process can occupy a region in space much larger than an optical wavelength. The nonlocality of these interactions can be exploited to engineer new types of processes, where highly delocalized phonon modes serve as an engineerable channel that mediates scattering processes between light waves propagating in distinct optical waveguides. These types of nonlocal optomechanical responses have been recently demonstrated as the basis for information transduction, however the nontrivial dynamics of such systems has yet to be explored. In this work, we show that the third-order nonlinear process resulting from spatially extended Brillouin-active phonon modes involves mixing products from spatially separated, optically decoupled waveguides, yielding a nonlocal joint-susceptibility. We further explore the coupling of multiple acoustic modes and show that multi-mode acoustic interference enables a tailorable nonlocal-nonlinear susceptibility, exhibiting a multi-pole frequency response.
Guided Acoustic Wave Brillouin Scattering (GAWBS) generates phase and polarization noise of light propagating in glass fibers. This excess noise affects the performance of various experiments operating at the quantum noise limit. We experimentally demonstrate the reduction of GAWBS noise in a photonic crystal fiber in a broad frequency range using cavity sound dynamics. We compare the noise spectrum to the one of a standard fiber and observe a 10-fold noise reduction in the frequency range up to 200 MHz. Based on our measurement results as well as on numerical simulations we establish a model for the reduction of GAWBS noise in photonic crystal fibers.
The synthesis of ultralow-noise microwaves is of both scientific and technological relevance for timing, metrology, communications and radio-astronomy. Today, the lowest reported phase noise signals are obtained via optical frequency-division using mode-locked laser frequency combs. Nonetheless, this technique ideally requires high repetition rates and tight comb stabilisation. Here, a soliton microcomb with a 14 GHz repetition rate is generated with an ultra-stable pump laser and used to derive an ultralow-noise microwave reference signal, with an absolute phase noise level below -60 dBc/Hz at 1 Hz offset frequency and -135 dBc/Hz at 10 kHz. This is achieved using a transfer oscillator approach, where the free-running microcomb noise (which is carefully studied and minimised) is cancelled via a combination of electronic division and mixing. Although this proof-of-principle uses an auxiliary comb for detecting the microcombs offset frequency, we highlight the prospects of this method with future self-referenced integrated microcombs and electro-optic combs, that would allow for ultralow-noise microwave and sub-terahertz signal generators.
The ever-increasing demand for high speed and large bandwidth has made photonic systems a leading candidate for the next generation of telecommunication and radar technologies. The photonic platform enables high performance while maintaining a small footprint and provides a natural interface with fiber optics for signal transmission. However, producing sharp, narrow-band filters that are competitive with RF components has remained challenging. In this paper, we demonstrate all-silicon RF-photonic multi-pole filters with $sim100times$ higher spectral resolution than previously possible in silicon photonics. This enhanced performance is achieved utilizing engineered Brillouin interactions to access long-lived phonons, greatly extending the available coherence times in silicon. This Brillouin-based optomechanical system enables ultra-narrow (3.5 MHz) multi-pole response that can be tuned over a wide ($sim10$ GHz) spectral band. We accomplish this in an all-silicon optomechanical waveguide system, using CMOS compatible fabrication techniques. In addition to bringing greatly enhanced performance to silicon photonics, we demonstrate reliability and robustness, necessary to transition silicon-based optomechanical technologies from the scientific bench-top to high-impact field-deployable technologies.
Time-domain Brillouin scattering is an opto-acousto-optical probe technique for the evaluation of the transparent materials. Ultrashort pump laser pulses via optoacoustic conversion launch in the sample picosecond coherent acoustic pulses. The time-delayed ultrashort probe laser pulses monitor the propagation of the coherent acoustic pulses via photo-elastic effect, which induces light scattering. A photodetector collects acoustically scattered light and the probe light reflected by the sample structure for the heterodyning. The scattered probe light carriers the information on the acoustical, optical and acousto-optical parameters of the material in the current position of the coherent acoustic pulse. Thus, among other applications, the time-domain Brillouin scattering is a technique for three-dimensional imaging. Sharp focusing of the coherent acoustic pulses and probe laser pulses could increase lateral spatial resolution of imaging, but could potentially diminish the depth of imaging. However, the theoretical analysis presented in this manuscript contra-intuitively demonstrates that the depth and spectral resolution of the time-domain Brillouin scattering imaging, with collinearly propagating paraxial sound and light beams, do not depend at all on the focusing/diffraction of sound. The variations of the amplitude of the time-domain Brillouin scattering signal are only due to the variations of the probe light amplitude caused by light focusing/diffraction. Although the amplitude of the acoustically scattered light is proportional to the product of the local acoustical and probe light field amplitudes the temporal dynamics of the time-domain Brillouin scattering signal amplitude is independent of the dynamics of the coherent acoustic pulse amplitude.