Do you want to publish a course? Click here

Reduction of Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibers

66   0   0.0 ( 0 )
 Added by Dominique Elser
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Guided Acoustic Wave Brillouin Scattering (GAWBS) generates phase and polarization noise of light propagating in glass fibers. This excess noise affects the performance of various experiments operating at the quantum noise limit. We experimentally demonstrate the reduction of GAWBS noise in a photonic crystal fiber in a broad frequency range using cavity sound dynamics. We compare the noise spectrum to the one of a standard fiber and observe a 10-fold noise reduction in the frequency range up to 200 MHz. Based on our measurement results as well as on numerical simulations we establish a model for the reduction of GAWBS noise in photonic crystal fibers.



rate research

Read More

By performing quantum-noise-limited optical heterodyne detection, we observe polarization noise in light after propagation through a hollow-core photonic crystal fiber (PCF). We compare the noise spectrum to the one of a standard fiber and find an increase of noise even though the light is mainly transmitted in air in a hollow-core PCF. Combined with our simulation of the acoustic vibrational modes in the hollow-core PCF, we are offering an explanation for the polarization noise with a variation of guided acoustic wave Brillouin scattering (GAWBS). Here, instead of modulating the strain in the fiber core as in a solid core fiber, the acoustic vibrations in hollow-core PCF influence the effective refractive index by modulating the geometry of the photonic crystal structure. This induces polarization noise in the light guided by the photonic crystal structure.
We investigate intermodal forward Brillouin scattering in a solid-core PCF, demonstrating efficient power conversion between the HE11 and HE21 modes, with a maximum gain coefficient of 21.4/W/km. By exploring mechanical modes of different symmetries, we observe both polarization-dependent and polarization-independent intermodal Brillouin interaction. Finally, we discuss the role of squeeze film air damping and leakage mechanisms, ultimately critical to the engineering of PCF structures with enhanced interaction between high order optical modes through flexural mechanical modes.
Here we identify a new form of optomechanical coupling in gas-filled hollow-core fibers. Stimulated forward Brillouin scattering is observed in air in the core of a photonic bandgap fiber. A single resonance is observed at 35 MHz, which corresponds to the first excited axial-radial acoustic mode in the air-filled core. The linewidth and coupling strengths are determined by the acoustic loss and electrostrictive coupling in air, respectively. A simple analytical model, refined by numerical simulations, is developed that accurately predicts the Brillouin coupling strength and frequency from the gas and fiber parameters. Since this form of Brillouin coupling depends strongly on both the acoustic and dispersive optical properties of the gas within the fiber, this new type of optomechanical interaction is highly tailorable. These results allow for forward Brillouin spectroscopy in dilute gases, could be useful for sensing and will present a power and noise limitation for certain applications.
Microwave photonic systems are compelling for their ability to process signals at high frequencies and over extremely wide bandwidths as a basis for next generation communication and radar technologies. However, many applications also require narrow-band $(simtext{MHz})$ filtering operations that are challenging to implement using optical filtering techniques, as this requires reliable integration of ultra-high quality factor $(sim 10^8)$ optical resonators. One way to address this challenge is to utilize long-lived acoustic resonances, taking advantage of their narrow-band frequency response to filter microwave signals. In this paper, we examine new strategies to harness a narrow-band acoustic response within a microwave-photonic signal processing platform through use of light-sound coupling. Our signal processing scheme is based on a recently demonstrated photon-phonon emitter-receiver device, which transfers information between the optical and acoustic domains using Brillouin interactions, and produces narrow-band filtering of a microwave signal. To understand the best way to use this device technology, we study the properties of a microwave-photonic link using this filtering scheme. We theoretically analyze the noise characteristics of this microwave-photonic link, and explore the parameter space for the design and optimization of such systems.
Realizing highly sensitive interferometry is essential to accurate observation of quantum properties. Here we study two kinds of Ramsey interference fringes in a whispering-gallery resonator, where the coherent phonons for free evolution can be achieved by stimulated Brillouin scattering. These two different fringes appear, respectively, in the regimes of rotating wave approximation (RWA) and anti-RWA. Our work shows particularly that the anti-RWA Ramsey interference takes some quantum properties of squeezing, which enhances the strength and visibility of the fringes and shows robustness against the systems decay. In application, our proposal, feasible with current laboratory techniques, provides a practical idea for building better quantum interferometers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا