Do you want to publish a course? Click here

Reasoning About Human-Object Interactions Through Dual Attention Networks

84   0   0.0 ( 0 )
 Added by Tete Xiao
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Objects are entities we act upon, where the functionality of an object is determined by how we interact with it. In this work we propose a Dual Attention Network model which reasons about human-object interactions. The dual-attentional framework weights the important features for objects and actions respectively. As a result, the recognition of objects and actions mutually benefit each other. The proposed model shows competitive classification performance on the human-object interaction dataset Something-Something. Besides, it can perform weak spatiotemporal localization and affordance segmentation, despite being trained only with video-level labels. The model not only finds when an action is happening and which object is being manipulated, but also identifies which part of the object is being interacted with. Project page: url{https://dual-attention-network.github.io/}.



rate research

Read More

We study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision as it provides semantic information about the interactions among the detected objects. We introduce HICO-DET, a new large benchmark for HOI detection, by augmenting the current HICO classification benchmark with instance annotations. To solve the task, we propose Human-Object Region-based Convolutional Neural Networks (HO-RCNN). At the core of our HO-RCNN is the Interaction Pattern, a novel DNN input that characterizes the spatial relations between two bounding boxes. Experiments on HICO-DET demonstrate that our HO-RCNN, by exploiting human-object spatial relations through Interaction Patterns, significantly improves the performance of HOI detection over baseline approaches.
Neural networks have achieved success in a wide array of perceptual tasks but often fail at tasks involving both perception and higher-level reasoning. On these more challenging tasks, bespoke approaches (such as modular symbolic components, independent dynamics models or semantic parsers) targeted towards that specific type of task have typically performed better. The downside to these targeted approaches, however, is that they can be more brittle than general-purpose neural networks, requiring significant modification or even redesign according to the particular task at hand. Here, we propose a more general neural-network-based approach to dynamic visual reasoning problems that obtains state-of-the-art performance on three different domains, in each case outperforming bespoke modular approaches tailored specifically to the task. Our method relies on learned object-centric representations, self-attention and self-supervised dynamics learning, and all three elements together are required for strong performance to emerge. The success of this combination suggests that there may be no need to trade off flexibility for performance on problems involving spatio-temporal or causal-style reasoning. With the right soft biases and learning objectives in a neural network we may be able to attain the best of both worlds.
While recent progress has significantly boosted few-shot classification (FSC) performance, few-shot object detection (FSOD) remains challenging for modern learning systems. Existing FSOD systems follow FSC approaches, ignoring critical issues such as spatial variability and uncertain representations, and consequently result in low performance. Observing this, we propose a novel textbf{Dual-Awareness Attention (DAnA)} mechanism that enables networks to adaptively interpret the given support images. DAnA transforms support images into textbf{query-position-aware} (QPA) features, guiding detection networks precisely by assigning customized support information to each local region of the query. In addition, the proposed DAnA component is flexible and adaptable to multiple existing object detection frameworks. By adopting DAnA, conventional object detection networks, Faster R-CNN and RetinaNet, which are not designed explicitly for few-shot learning, reach state-of-the-art performance in FSOD tasks. In comparison with previous methods, our model significantly increases the performance by 47% (+6.9 AP), showing remarkable ability under various evaluation settings.
Human-object interaction detection is an important and relatively new class of visual relationship detection tasks, essential for deeper scene understanding. Most existing approaches decompose the problem into object localization and interaction recognition. Despite showing progress, these approaches only rely on the appearances of humans and objects and overlook the available context information, crucial for capturing subtle interactions between them. We propose a contextual attention framework for human-object interaction detection. Our approach leverages context by learning contextually-aware appearance features for human and object instances. The proposed attention module then adaptively selects relevant instance-centric context information to highlight image regions likely to contain human-object interactions. Experiments are performed on three benchmarks: V-COCO, HICO-DET and HCVRD. Our approach outperforms the state-of-the-art on all datasets. On the V-COCO dataset, our method achieves a relative gain of 4.4% in terms of role mean average precision ($mAP_{role}$), compared to the existing best approach.
249 - Dongming Yang , Yuexian Zou 2020
Human-Object Interaction (HOI) detection devotes to learn how humans interact with surrounding objects via inferring triplets of < human, verb, object >. However, recent HOI detection methods mostly rely on additional annotations (e.g., human pose) and neglect powerful interactive reasoning beyond convolutions. In this paper, we present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs, in which interactive semantics implied among visual targets are efficiently exploited. The proposed model consists of a project function that maps related targets from convolution space to a graph-based semantic space, a message passing process propagating semantics among all nodes and an update function transforming the reasoned nodes back to convolution space. Furthermore, we construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet. Beyond inferring HOIs using instance features respectively, the framework dynamically parses pairwise interactive semantics among visual targets by integrating two-level in-Graphs, i.e., scene-wide and instance-wide in-Graphs. Our framework is end-to-end trainable and free from costly annotations like human pose. Extensive experiments show that our proposed framework outperforms existing HOI detection methods on both V-COCO and HICO-DET benchmarks and improves the baseline about 9.4% and 15% relatively, validating its efficacy in detecting HOIs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا