Do you want to publish a course? Click here

Dual-Awareness Attention for Few-Shot Object Detection

119   0   0.0 ( 0 )
 Added by Tung-I Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

While recent progress has significantly boosted few-shot classification (FSC) performance, few-shot object detection (FSOD) remains challenging for modern learning systems. Existing FSOD systems follow FSC approaches, ignoring critical issues such as spatial variability and uncertain representations, and consequently result in low performance. Observing this, we propose a novel textbf{Dual-Awareness Attention (DAnA)} mechanism that enables networks to adaptively interpret the given support images. DAnA transforms support images into textbf{query-position-aware} (QPA) features, guiding detection networks precisely by assigning customized support information to each local region of the query. In addition, the proposed DAnA component is flexible and adaptable to multiple existing object detection frameworks. By adopting DAnA, conventional object detection networks, Faster R-CNN and RetinaNet, which are not designed explicitly for few-shot learning, reach state-of-the-art performance in FSOD tasks. In comparison with previous methods, our model significantly increases the performance by 47% (+6.9 AP), showing remarkable ability under various evaluation settings.



rate research

Read More

We introduce Few-Shot Video Object Detection (FSVOD) with three important contributions: 1) a large-scale video dataset FSVOD-500 comprising of 500 classes with class-balanced videos in each category for few-shot learning; 2) a novel Tube Proposal Network (TPN) to generate high-quality video tube proposals to aggregate feature representation for the target video object; 3) a strategically improved Temporal Matching Network (TMN+) to match representative query tube features and supports with better discriminative ability. Our TPN and TMN+ are jointly and end-to-end trained. Extensive experiments demonstrate that our method produces significantly better detection results on two few-shot video object detection datasets compared to image-based methods and other naive video-based extensions. Codes and datasets will be released at https://github.com/fanq15/FewX.
Learning to detect novel objects from few annotated examples is of great practical importance. A particularly challenging yet common regime occurs when there are extremely limited examples (less than three). One critical factor in improving few-shot detection is to address the lack of variation in training data. We propose to build a better model of variation for novel classes by transferring the shared within-class variation from base classes. To this end, we introduce a hallucinator network that learns to generate additional, useful training examples in the region of interest (RoI) feature space, and incorporate it into a modern object detection model. Our approach yields significant performance improvements on two state-of-the-art few-shot detectors with different proposal generation procedures. In particular, we achieve new state of the art in the extremely-few-shot regime on the challenging COCO benchmark.
Conventional detection networks usually need abundant labeled training samples, while humans can learn new concepts incrementally with just a few examples. This paper focuses on a more challenging but realistic class-incremental few-shot object detection problem (iFSD). It aims to incrementally transfer the model for novel objects from only a few annotated samples without catastrophically forgetting the previously learned ones. To tackle this problem, we propose a novel method LEAST, which can transfer with Less forgetting, fEwer training resources, And Stronger Transfer capability. Specifically, we first present the transfer strategy to reduce unnecessary weight adaptation and improve the transfer capability for iFSD. On this basis, we then integrate the knowledge distillation technique using a less resource-consuming approach to alleviate forgetting and propose a novel clustering-based exemplar selection process to preserve more discriminative features previously learned. Being a generic and effective method, LEAST can largely improve the iFSD performance on various benchmarks.
Few-shot object detection is an imperative and long-lasting problem due to the inherent long-tail distribution of real-world data. Its performance is largely affected by the data scarcity of novel classes. But the semantic relation between the novel classes and the base classes is constant regardless of the data availability. In this work, we investigate utilizing this semantic relation together with the visual information and introduce explicit relation reasoning into the learning of novel object detection. Specifically, we represent each class concept by a semantic embedding learned from a large corpus of text. The detector is trained to project the image representations of objects into this embedding space. We also identify the problems of trivially using the raw embeddings with a heuristic knowledge graph and propose to augment the embeddings with a dynamic relation graph. As a result, our few-shot detector, termed SRR-FSD, is robust and stable to the variation of shots of novel objects. Experiments show that SRR-FSD can achieve competitive results at higher shots, and more importantly, a significantly better performance given both lower explicit and implicit shots. The benchmark protocol with implicit shots removed from the pretrained classification dataset can serve as a more realistic setting for future research.
Few-shot object detection (FSOD) aims to strengthen the performance of novel object detection with few labeled samples. To alleviate the constraint of few samples, enhancing the generalization ability of learned features for novel objects plays a key role. Thus, the feature learning process of FSOD should focus more on intrinsical object characteristics, which are invariant under different visual changes and therefore are helpful for feature generalization. Unlike previous attempts of the meta-learning paradigm, in this paper, we explore how to enhance object features with intrinsical characteristics that are universal across different object categories. We propose a new prototype, namely universal prototype, that is learned from all object categories. Besides the advantage of characterizing invariant characteristics, the universal prototypes alleviate the impact of unbalanced object categories. After enhancing object features with the universal prototypes, we impose a consistency loss to maximize the agreement between the enhanced features and the original ones, which is beneficial for learning invariant object characteristics. Thus, we develop a new framework of few-shot object detection with universal prototypes ({FSOD}^{up}) that owns the merit of feature generalization towards novel objects. Experimental results on PASCAL VOC and MS COCO show the effectiveness of {FSOD}^{up}. Particularly, for the 1-shot case of VOC Split2, {FSOD}^{up} outperforms the baseline by 6.8% in terms of mAP.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا