Do you want to publish a course? Click here

A snapshot full-Stokes spectropolarimeter for detecting life on Earth

74   0   0.0 ( 0 )
 Added by Frans Snik
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the design of a point-and-shoot non-imaging full-Stokes spectropolarimeter dedicated to detecting life on Earth from an orbiting platform like the ISS. We specifically aim to map circular polarization in the spectral features of chlorophyll and other biopigments for our planet as a whole. These non-zero circular polarization signatures are caused by homochirality of the molecular and supramolecular configurations of organic matter, and are considered the most unambiguous biomarker. To achieve a fully solid-state snapshot design, we implement a novel spatial modulation that completely separates the circular and linear polarization channels. The polarization modulator consists of a patterned liquid-crystal quarter-wave plate inside the spectrograph slit, which also constitutes the first optical element of the instrument. This configuration eliminates cross-talk between linear and circular polarization, which is crucial because linear polarization signals are generally much stronger than the circular polarization signals. This leads to a quite unorthodox optical concept for the spectrograph, in which the object and the pupil are switched. We discuss the general design requirements and trade-offs of LSDpol (Life Signature Detection polarimeter), a prototype instrument that is currently under development.



rate research

Read More

380 - Dora Klindv{z}ic 2020
LOUPE, the Lunar Observatory for Unresolved Polarimetry of the Earth, is a small, robust spectro-polarimeter with a mission to observe the Earth as an exoplanet. Detecting Earth-like planets in stellar habitable zones is one of the key challenges of modern exoplanetary science. Characterising such planets and searching for traces of life requires the direct detection of their signals. LOUPE provides unique spectral flux and polarisation data of sunlight reflected by the Earth, the only planet known to harbor life. This data will be used to test numerical codes to predict signals of Earth-like exoplanets, to test algorithms that retrieve planet properties, and to fine-tune the design and observational strategies of future space observatories. From the Moon, LOUPE will continuously see the entire Earth, enabling it to monitor the signal changes due to the planets daily rotation, weather patterns, and seasons, across all phase angles. Here, we present both the science case and the technology behind LOUPEs instrumental and mission design.
450 - C. Moutou , I. Boisse , G. Hebrard 2015
SPIRou is a near-infrared spectropolarimeter and high-precision radial-velocity instrument, to be mounted on the 3.6m Canada-France-Hawaii telescope ontop Maunakea and to be offered to the CFHT community from 2018. It focuses on two main scientific objectives : (i) the search and study of Earth-like planets around M dwarfs, especially in their habitable zone and (ii) the study of stellar and planetary formation in the presence of stellar magnetic field. The SPIRou characteristics (complete coverage of the near infrared wavelengths, high resolution, high stability and efficiency, polarimetry) also allow many other programs, e.g., magnetic fields and atmospheres of M dwarfs and brown dwarfs, star-planet interactions, formation and characterization of massive stars, dynamics and atmospheric chemistry of planets in the solar system.
Astronomical spectropolarimeters can be subject to many sources of systematic error which limit the precision and accuracy of the instrument. We present a calibration method for observing high-resolution polarized spectra using chromatic liquid-crystal variable retarders (LCVRs). These LCVRs allow for polarimetric modulation of the incident light without any moving optics at frequencies >10Hz. We demonstrate a calibration method using pure Stokes input states that enables an achromatization of the system. This Stokes-based deprojection method reproduces input polarization even though highly chromatic instrument effects exist. This process is first demonstrated in a laboratory spectropolarimeter where we characterize the LCVRs and show example deprojections. The process is then implemented the a newly upgraded HiVIS spectropolarimeter on the 3.67m AEOS telescope. The HiVIS spectropolarimeter has also been expanded to include broad-band full-Stokes spectropolarimetry using achromatic wave-plates in addition to the tunable full-Stokes polarimetric mode using LCVRs. These two new polarimetric modes in combination with a new polarimetric calibration unit provide a much more sensitive polarimetric package with greatly reduced systematic error.
X-shooter is one of the most popular instruments at the VLT, offering instantaneous spectroscopy from 300 to 2500 nm. We present the design of a single polarimetric unit at the polarization-free Cassegrain focus that serves all three spectrograph arms of X-shooter. It consists of a calcite Savart plate as a polarizing beam-splitter and a rotatable crystal retarder stack as a polychromatic modulator. Since even superachromatic wave plates have a wavelength range that is too limited for X-shooter, this novel modulator is designed to offer close-to-optimal polarimetric efficiencies for all Stokes parameters at all wavelengths. We analyze the modulator design in terms of its polarimetric performance, its temperature sensitivity, and its polarized fringes. Furthermore, we present the optical design of the polarimetric unit. The X-shooter polarimeter will furnish a myriad of science cases: from measuring stellar magnetic fields (e.g., Ap stars, white dwarfs, massive stars) to determining asymmetric structures around young stars and in supernova explosions.
The identification of extraterrestrial life is one the most exciting and challenging endeavors in space research. The existence of extinct or extant life can be inferred from biogenic elements, isotopes, and molecules, but accurate and sensitive instruments are needed. In this whitepaper we show that Laser-based Mass Spectrometers are promising instrument for the in situ identification of atomic, isotopic, and molecular biosignatures. An overview of Laser ablation/Ionization Mass Spectrometry (LIMS) and Laser Desorption/Ionization Mass Spectrometry (LD-MS) instruments developed for space exploration is given. Their uses are discussed in the context of a Mars scenario and a Europa scenario. We show that Laser-based Mass Spectrometers are versatile and technologically mature instruments with many beneficial characteristics for the detection of life. Future planetary lander and rover missions should be encouraged to make use of Laser-based Mass Spectrometry instruments in their scientific payload.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا