Do you want to publish a course? Click here

Detecting the elemental and molecular signatures of life: Laser-based mass spectrometry technologies

67   0   0.0 ( 0 )
 Added by Niels Ligterink
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The identification of extraterrestrial life is one the most exciting and challenging endeavors in space research. The existence of extinct or extant life can be inferred from biogenic elements, isotopes, and molecules, but accurate and sensitive instruments are needed. In this whitepaper we show that Laser-based Mass Spectrometers are promising instrument for the in situ identification of atomic, isotopic, and molecular biosignatures. An overview of Laser ablation/Ionization Mass Spectrometry (LIMS) and Laser Desorption/Ionization Mass Spectrometry (LD-MS) instruments developed for space exploration is given. Their uses are discussed in the context of a Mars scenario and a Europa scenario. We show that Laser-based Mass Spectrometers are versatile and technologically mature instruments with many beneficial characteristics for the detection of life. Future planetary lander and rover missions should be encouraged to make use of Laser-based Mass Spectrometry instruments in their scientific payload.



rate research

Read More

We present the design of a point-and-shoot non-imaging full-Stokes spectropolarimeter dedicated to detecting life on Earth from an orbiting platform like the ISS. We specifically aim to map circular polarization in the spectral features of chlorophyll and other biopigments for our planet as a whole. These non-zero circular polarization signatures are caused by homochirality of the molecular and supramolecular configurations of organic matter, and are considered the most unambiguous biomarker. To achieve a fully solid-state snapshot design, we implement a novel spatial modulation that completely separates the circular and linear polarization channels. The polarization modulator consists of a patterned liquid-crystal quarter-wave plate inside the spectrograph slit, which also constitutes the first optical element of the instrument. This configuration eliminates cross-talk between linear and circular polarization, which is crucial because linear polarization signals are generally much stronger than the circular polarization signals. This leads to a quite unorthodox optical concept for the spectrograph, in which the object and the pupil are switched. We discuss the general design requirements and trade-offs of LSDpol (Life Signature Detection polarimeter), a prototype instrument that is currently under development.
380 - Dora Klindv{z}ic 2020
LOUPE, the Lunar Observatory for Unresolved Polarimetry of the Earth, is a small, robust spectro-polarimeter with a mission to observe the Earth as an exoplanet. Detecting Earth-like planets in stellar habitable zones is one of the key challenges of modern exoplanetary science. Characterising such planets and searching for traces of life requires the direct detection of their signals. LOUPE provides unique spectral flux and polarisation data of sunlight reflected by the Earth, the only planet known to harbor life. This data will be used to test numerical codes to predict signals of Earth-like exoplanets, to test algorithms that retrieve planet properties, and to fine-tune the design and observational strategies of future space observatories. From the Moon, LOUPE will continuously see the entire Earth, enabling it to monitor the signal changes due to the planets daily rotation, weather patterns, and seasons, across all phase angles. Here, we present both the science case and the technology behind LOUPEs instrumental and mission design.
142 - C. Boeche , E.K. Grebel 2015
Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated code suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R=2,000-20,000). Methods: After the astrophysical calibration of the oscillator strengths of 4643 absorption lines covering the wavelength ranges 5212-6860AA and 8400-8924AA, we constructed a library that contains the equivalent widths (EW) of these lines for a grid of stellar parameters. The EWs of each line are fit by a polynomial function that describes the EW of the line as a function of the stellar parameters. The coefficients of these polynomial functions are stored in a library called the $GCOG$ library. SP_Ace, a code written in FORTRAN95, uses the GCOG library to compute the EWs of the lines, constructs models of spectra as a function of the stellar parameters and abundances, and searches for the model that minimizes the $chi^2$ deviation when compared to the observed spectrum. The code has been tested on synthetic and real spectra for a wide range of signal-to-noise and spectral resolutions. Results: SP_Ace derives stellar parameters such as Teff, log g, [M/H], and chemical abundances of up to ten elements for low to medium resolution spectra of FGK-type stars with precision comparable to the one usually obtained with spectra of higher resolution. Systematic errors in stellar parameters and chemical abundances are presented and identified with tests on synthetic and real spectra. Stochastic errors are automatically estimated by the code for all the parameters. A simple Web front end of SP_Ace can be found at http://dc.g-vo.org/SP_ACE, while the source code will be published soon.
Imaging rocky planets in reflected light, a key focus of future NASA missions and ELTs, requires advanced wavefront control to maintain a deep, temporally correlated null of stellar halo at just several diffraction beam widths. We discuss development of Linear Dark Field Control (LDFC) to achieve this aim. We describe efforts to test spatial LDFC in a laboratory setting for the first time, using the Ames Coronagraph Experiment (ACE) testbed. Our preliminary results indicate that spatial LDFC is a promising method focal-plane wavefront control method capable of maintaining a static dark hole, at least at contrasts relevant for imaging mature planets with 30m-class telescopes.
Transmission spectroscopy facilitates the detection of molecules and/or clouds in the atmospheres of exoplanets. Such studies rely heavily on space-based or large ground-based observatories, as one needs to perform time- resolved, high signal-to-noise spectroscopy. The FORS2 instrument at ESOs Very Large Telescope is the obvious choice for performing such studies, and was indeed pioneering the field in 2010. After that, however, it was shown to suffer from systematic errors caused by the Longitudinal Atmospheric Dispersion Corrector (LADC). This was successfully addressed, leading to a renewed interest for this instrument as shown by the number of proposals submitted to perform transmission spectroscopy of exoplanets. We present here the context, the problem and how we solved it, as well as the recent results obtained. We finish by providing tips for an optimum strategy to do transmission spectroscopy with FORS2, in the hope that FORS2 may become the instrument of choice for ground-based transmission spectroscopy of exoplanets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا