Do you want to publish a course? Click here

Two-axis cavity optomechanical torque characterization of magnetic microstructures

108   0   0.0 ( 0 )
 Added by Joseph Losby
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Significant new functionality is reported for torsion mechanical tools aimed at full magnetic characterizations of both spin statics and dynamics in micro- and nanostructures. Specifically, two orthogonal torque directions are monitored and the results co-analyzed to separate magnetic moment and magnetic susceptibility contributions to torque, as is desired for characterization of anisotropic three-dimensional structures. The approach is demonstrated through application to shape and microstructural disorder-induced magnetic anisotropies in lithographically patterned permalloy, and will have utility for the determination of important magnetic thin-film and multilayer properties including interface anisotropy and exchange bias. The results reflect remarkable sensitivity of the out-of-plane magnetic torque to the nature of small edge domains perpendicular to the applied field direction, and also contain tantalizing indications of direct coupling to spin dynamics at the frequency of the mechanics.



rate research

Read More

We demonstrate the integration of a mesoscopic ferromagnetic needle with a cavity optomechanical torsional resonator, and its use for quantitative determination of the needles magnetic properties, as well as amplification and cooling of the resonator motion. With this system we measure torques as small as 32 zNm, corresponding to sensing an external magnetic field of 0.12 A/m (150 nT). Furthermore, we are able to extract the magnetization (1710 kA/m) of the magnetic sample, not known a priori, demonstrating this systems potential for studies of nanomagnetism. Finally, we show that we can magnetically drive the torsional resonator into regenerative oscillations, and dampen its mechanical mode temperature from room temperature to 11.6 K, without sacrificing torque sensitivity.
Nanophotonic optomechanical devices allow observation of nanoscale vibrations with sensitivity that has dramatically advanced metrology of nanomechanical structures [1-9] and has the potential to impact studies of nanoscale physical systems in a similar manner [10, 11]. Here we demonstrate this potential with a nanophotonic optomechanical torque magnetometer and radiofrequency (RF) magnetic susceptometer. Exquisite readout sensitivity provided by a nanocavity integrated within a torsional nanomechanical resonator enables observations of the unique net magnetization and RF-driven responses of single mesoscopic magnetic structures in ambient conditions. The magnetic moment resolution is sufficient for observation of Barkhausen steps in the magnetic hysteresis of a lithographically patterned permalloy island [12]. In addition, significantly enhanced RF susceptibility is found over narrow field ranges and attributed to thermally assisted driven hopping of a magnetic vortex core between neighboring pinning sites [13]. The on-chip magneto-susceptometer scheme offers a promising path to powerful integrated cavity optomechanical devices for quantitative characterization of magnetic micro- and nanosystems in science and technology.
We present a monolithic integrated aluminum nitride (AlN) optomechanical resonator in which the mechanical motion is actuated by piezoelectric force and the displacement is transduced by a high-Q optical cavity. The AlN optomechanical resonator is excited from a radio-frequency electrode via a small air gap to eliminate resonator-to-electrode loss. We observe the electrically excited mechanical motion at 47.3 MHz, 1.04 GHz, and 3.12 GHz, corresponding to the 1st, 2nd, and 4th radial-contour mode of the wheel resonator respectively. An equivalent circuit model is developed to describe the observed Fano-like resonance spectrum.
135 - B.D. Hauer , T.J. Clark , P.H. Kim 2019
Dynamical backaction has proven to be a versatile tool in cavity optomechanics, allowing for precise manipulation of a mechanical resonators motion using confined optical photons. In this work, we present measurements of a silicon whispering-gallery-mode optomechanical cavity where backaction originates from opposing radiation pressure and photothermal forces, with the former dictating the optomechanical spring effect and the latter governing the optomechanical damping. At high enough optical input powers, we show that the photothermal force drives the mechanical resonator into self-oscillations for a pump beam detuned to the lower-frequency side of the optical resonance, contrary to what one would expect for a radiation-pressure-dominated optomechanical device. Using a fully nonlinear model, we fit the hysteretic response of the optomechanical cavity to extract its properties, demonstrating that this non-sideband-resolved device exists in a regime where photothermal damping could be used to cool its motion to the quantum ground state.
On-chip actuation and readout of mechanical motion is key to characterize mechanical resonators and exploit them for new applications. We capacitively couple a silicon nitride membrane to an off resonant radio-frequency cavity formed by a lumped element circuit. Despite a low cavity quality factor (Q$_mathrm{E}approx$ 7.4) and off resonant, room temperature operation, we are able to parametrize several mechanical modes and estimate their optomechanical coupling strengths. This enables real-time measurements of the membranes driven motion and fast characterization without requiring a superconducting cavity, thereby eliminating the need for cryogenic cooling. Finally, we observe optomechanically induced transparency and absorption, crucial for a number of applications including sensitive metrology, ground state cooling of mechanical motion and slowing of light.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا