No Arabic abstract
The cataclysmic variable MV Lyr was present in the Kepler field yielding a light curve with the duration of almost 1500 days with 60 second cadence. Such high quality data of this nova-like system with obvious fast optical variability show multicomponent power density spectra. Our goal is to study the light curve from different point of view, and perform a shot profile analysis. We search for characteristics not discovered with standard power density spectrum based methods. The shot profile method identifies individual shots in the light curve, and averages them in order to get all substructures with typical time scales. We also tested the robustness of our analysis using simple shot noise model. We obtained mean profiles with multicomponent features. The shot profile method distinguishes substructures with similar time scales which appear as a single degenerate feature in power density spectra. Furthermore, this method yields the identification of another high frequency component in the power density spectra of Kepler and XMM-Newton data not detected so far. Moreover, we found side-lobes accompanied with the central spike, making the profile very similar to another Kepler data of blazar W2R 1926+42, and Ginga data of Cyg X-1. All three objects show similar time scale ratios of the rising vs. declining part of the central spikes, while the two binaries have also similar rising profiles of the shots described by a power-law function. The similarity of both binary shot profiles suggests that the shots originate from the same origin, e.g. aperiodic mass accretion in the accretion disc. Moreover, the similarity with the blazar may imply that the ejection fluctuations in the blazar jet are connected to accretion fluctuations driving the variability in binaries. This points out to connection between jet and the accretion disc.
AIMS: We studied unique data of a nova-like system MV Lyr during transition from the high to low state and vice versa taken by the Kepler space telescope. We were interested in evolution of frequency components found previously by Scaringi et al. in different data also obtained by Kepler. METHODS: We divided the light curve into 10 day segments and investigated the corresponding power density spectra. We searched for individual frequency components by fitting with Lorentzian functions. Additionally, we investigated the variability using averaged shot profiles calculated from the light curve divided into 10 equally spaces subsamples. RESULTS: We found very complex changes of the power density spectra. We focused our study onto three frequency components. Strong activity increase is seen at low frequencies. Contrariwise, the high frequency part of the spectrum strongly decreases in power with specific rise in characteristic frequencies of the individual components. We discuss various scenarios of this phenomenology as reprocessing of X-rays in a receding accretion disc or a radiation from a more active region at the outer disc. Finally, we show that various cataclysmic variables show similar characteristic frequencies in their power density spectra. These are dependent on activity stage, making the situation similar to X-ray binaries.
We present an analysis of mock X-ray spectra and light curves of magnetic cataclysmic variables using an upgraded version of the 3D CYCLOPS code. This 3D representation of the accretion flow allows us to properly model total and partial occultation of the post-shock region by the white dwarf as well as the modulation of the X-ray light curves due to the phase-dependent extinction of the pre-shock region. We carried out detailed post-shock region modeling in a four-dimensional parameter space by varying the white dwarf mass and magnetic field strength as well as the magnetosphere radius and the specific accretion rate. To calculate the post-shock region temperature and density profiles, we assumed equipartition between ions and electrons, took into account the white dwarf gravitational potential, the finite size of the magnetosphere and a dipole-like magnetic field geometry, and considered cooling by both bremsstrahlung and cyclotron radiative processes. By investigating the impact of the parameters on the resulting X-ray continuum spectra, we show that there is an inevitable degeneracy in the four-dimensional parameter space investigated here, which compromises X-ray continuum spectral fitting strategies and can lead to incorrect parameter estimates. However, the inclusion of X-ray light curves in different energy ranges can break this degeneracy, and it therefore remains, in principle, possible to use X-ray data to derive fundamental parameters of magnetic cataclysmic variables, which represents an essential step toward understanding their formation and evolution.
We present the results of an analysis of data covering 1.5 years of the dwarf nova V447 Lyr. We detect eclipses of the accretion disk by the mass donating secondary star every 3.74 hrs which is the binary orbital period. V447 Lyr is therefore the first dwarf nova in the Kepler field to show eclipses. We also detect five long outbursts and six short outbursts showing V447 Lyr is a U Gem type dwarf nova. We show that the orbital phase of the mid-eclipse occurs earlier during outbursts compared to quiescence and that the width of the eclipse is greater during outburst. This suggests that the bright spot is more prominent during quiescence and that the disk is larger during outburst than quiescence. This is consistent with an expansion of the outer disk radius due to the presence of high viscosity material associated with the outburst, followed by a contraction in quiescence due to the accretion of low angular momentum material. We note that the long outbursts appear to be triggered by a short outburst, which is also observed in the super-outbursts of SU UMa dwarf novae as observed using Kepler.
Short-period cataclysmic variables (spCVs), with orbital periods below the period gap ($P_{orb}$ < 2 hr), offer insight into the evolutionary models of CVs and can serve as strong emitters of gravitational waves (GWs). To identify new spCV candidates, we crossmatch a catalog of known CVs to sources with robust parallaxes in the Gaia second data release (DR2). We uncover and fit an apparently monotonic relationship between the color--absolute-magnitude diagram (CMD) position and $P_{orb}$ of these CVs, revealed in DR2. To supplement this relation, we develop a method for identifying sources with large photometric variability, a characteristic trait of spCVs. Using all available Gaia light curves, we construct a machine-learned regression model to predict variability metrics for sources in the CMD locus of known spCVs based solely on time-averaged covariates present in DR2. Using this approach we identify 3,253 candidate spCVs, of which $sim$95% are previously unknown. Inspection of archival SDSS spectra of these candidates suggests that $>$82% are likely to be spCVs: a noticeably higher recovery rate than previous light curve searches, which bias toward active systems. We obtain optical spectra of 9 new systems at Lick Observatory and confirm that all objects are CV systems. We measure $P_{orb}$ for 7 systems using archival Gaia and Palomar Transient Factory light curves, 3 of which do not have previous $P_{orb}$ measurements. We use the CMD-$P_{orb}$ relation to infer the detectability of these systems to the upcoming LISA mission, and find that six sources may be coherent LISA verification binaries, with an estimated SNR > 5 in the 4 yr mission. This paper demonstrates that the time-averaged Gaia catalog is a powerful tool in the methodical discovery and characterization of time-varying objects, making it complementary to missions like ZTF, TESS, and the Vera Rubin LSST.
The space density of the various classes of cataclysmic variables (CVs) could only be weakly constrained in the past. Reasons were the small number of objects in complete X-ray flux-limited samples and the difficulty to derive precise distances to CVs. The former limitation still exists. Here the impact of Gaia parallaxes and implied distances on the space density of X-ray selected complete, flux-limited samples is studied. The samples are described in the literature, those of non-magnetic CVs are based on ROSAT (RBS - ROSAT Bright Survey & NEP -- North Ecliptic Pole), that of the Intermediate Polars stems from Swift/BAT. All CVs appear to be rarer than previously thought, although the new values are all within the errors of past studies. Upper limits at 90% confidence for the space densities of non-magnetic CVs are $rho_{rm RBS} < 1.1 times 10^{-6}$ pc$^{-3}$, and $rho_{rm RBS+NEP} < 5.1 times 10^{-6}$ p$^{-3}$, for an assumed scale height of $h=260$ pc and $rho_{rm IPs} < 1.3 times 10^{-7}$ p$^{-3}$ for the long-period Intermediate Polars at a scale height of 120 pc. Most of the distances to the IPs were under-estimated in the past. The upper limits to the space densities are only valid in the case where CVs do not have lower X-ray luminosities than the lowest-luminosity member of the sample. These results need consolidation by larger sample sizes, soon to be established through sensitive X-ray all-sky surveys to be performed with eROSITA on the Spektrum-X-Gamma mission.