Do you want to publish a course? Click here

On the space density of X-ray selected cataclysmic variables

96   0   0.0 ( 0 )
 Added by Axel D. Schwope
 Publication date 2018
  fields Physics
and research's language is English
 Authors A. Schwope




Ask ChatGPT about the research

The space density of the various classes of cataclysmic variables (CVs) could only be weakly constrained in the past. Reasons were the small number of objects in complete X-ray flux-limited samples and the difficulty to derive precise distances to CVs. The former limitation still exists. Here the impact of Gaia parallaxes and implied distances on the space density of X-ray selected complete, flux-limited samples is studied. The samples are described in the literature, those of non-magnetic CVs are based on ROSAT (RBS - ROSAT Bright Survey & NEP -- North Ecliptic Pole), that of the Intermediate Polars stems from Swift/BAT. All CVs appear to be rarer than previously thought, although the new values are all within the errors of past studies. Upper limits at 90% confidence for the space densities of non-magnetic CVs are $rho_{rm RBS} < 1.1 times 10^{-6}$ pc$^{-3}$, and $rho_{rm RBS+NEP} < 5.1 times 10^{-6}$ p$^{-3}$, for an assumed scale height of $h=260$ pc and $rho_{rm IPs} < 1.3 times 10^{-7}$ p$^{-3}$ for the long-period Intermediate Polars at a scale height of 120 pc. Most of the distances to the IPs were under-estimated in the past. The upper limits to the space densities are only valid in the case where CVs do not have lower X-ray luminosities than the lowest-luminosity member of the sample. These results need consolidation by larger sample sizes, soon to be established through sensitive X-ray all-sky surveys to be performed with eROSITA on the Spektrum-X-Gamma mission.



rate research

Read More

We combine two complete, X-ray flux-limited surveys, the ROSAT Bright Survey (RBS) and the ROSAT North Ecliptic Pole (NEP) survey, to measure the space density (rho) and X-ray luminosity function (Phi) of non-magnetic CVs. The combined survey has a flux limit of F_X ga 1.1 times 10^{-12} erg cm^{-2}s^{-1} over most of its solid angle of just over 2pi, but is as deep as simeq 10^{-14} erg cm^{-2}s^{-1} over a small area. The CV sample that we construct from these two surveys contains 20 non-magnetic systems. We carefully include all sources of statistical error in calculating rho and Phi by using Monte Carlo simulations; the most important uncertainty proves to be the often large errors in distances estimates. If we assume that the 20 CVs in the combined RBS and NEP survey sample are representative of the intrinsic population, the space density of non-magnetic CVs is 4^{+6}_{-2} times 10^{-6} pc^{-3}. We discuss the difficulty in measuring Phi in some detail---in order to account for biases in the measurement, we have to adopt a functional form for Phi. Assuming that the X-ray luminosity function of non-magnetic CVs is a truncated power law, we constrain the power law index to -0.80 pm 0.05. It seems likely that the two surveys have failed to detect a large, faint population of short-period CVs, and that the true space density may well be a factor of 2 or 3 larger than what we have measured; this is possible, even if we only allow for undetected CVs to have X-ray luminosities in the narrow range 28.7< log(L_X/erg,s^{-1})<29.7. However, rho as high as 2 times 10^{-4} pc^{-3} would require that the majority of CVs has X-ray luminosities below L_X = 4 times 10^{28} erg s^{-1} in the 0.5--2.0 keV band.
We use the complete, X-ray flux-limited ROSAT Bright Survey (RBS) to measure the space density of magnetic cataclysmic variables (mCVs). The survey provides complete optical identification of all sources with count rate >0.2/s over half the sky ($|b|>30^circ$), and detected 6 intermediate polars (IPs) and 24 polars. If we assume that the 30 mCVs included in the RBS are representative of the intrinsic population, the space density of mCVs is $8^{+4}_{-2} times 10^{-7},{rmpc^{-3}}$. Considering polars and IPs separately, we find $rho_{polar}=5^{+3}_{-2} times 10^{-7},{rm pc^{-3}}$ and $rho_{IP}=3^{+2}_{-1} times 10^{-7},{rm pc^{-3}}$. Allowing for a 50% high-state duty cycle for polars (and assuming that these systems are below the RBS detection limit during their low states) doubles our estimate of $rho_{polar}$ and brings the total space density of mCVs to $1.3^{+0.6}_{-0.4} times 10^{-6},{rm pc^{-3}}$. We also place upper limits on the sizes of faint (but persistent) mCV populations that might have escaped detection in the RBS. Although the large uncertainties in the $rho$ estimates prevent us from drawing strong conclusions, we discuss the implications of our results for the evolutionary relationship between IPs and polars, the fraction of CVs with strongly magnetic white dwarfs (WDs), and for the contribution of mCVs to Galactic populations of hard X-ray sources at $L_X ga 10^{31} {rm erg/s}$. Our space density estimates are consistent with the very simple model where long-period IPs evolve into polars and account for the whole short-period polar population. We find that the fraction of WDs that are strongly magnetic is not significantly higher for CV primaries than for isolated WDs. Finally, the space density of IPs is sufficiently high to explain the bright, hard X-ray source population in the Galactic Centre.
Binary evolution theory predicts that accreting white dwarfs with sub-stellar companions dominate the Galactic population of cataclysmic variables (CVs). In order to test these predictions, it is necessary to identify these systems, which may be difficult if the signatures of accretion become too weak to be detected. The only chance to identify such dead CVs is by exploiting their close binary nature. We have therefore searched the Sloan Digital Sky Survey (SDSS) Stripe 82 area for apparently isolated white dwarfs that undergo eclipses by a dark companion. We found no such eclipses in either the SDSS or Palomar Transient Factory data sets among our sample of 2264 photometrically selected white dwarf candidates within Stripe 82. This null result allows us to set a firm upper limit on the space density, $rho_0$, of dead CVs. In order to determine this limit, we have used Monte-Carlo simulations to fold our selection criteria through a simple model of the Galactic CV distribution. Assuming a $T_{WD}=7,500$ K, the resulting 2$sigma$ limit on the space density of dead CVs is $rho_0 lesssim 2 times 10^{-5}$ pc$^{-3}$, where $T_{WD}$ is the typical effective temperature of the white dwarf in such systems.
We explore the observational appearance of the merger of a low-mass star with a white dwarf (WD) binary companion. We are motivated by Schreiber et al. (2016), who found that multiple tensions between the observed properties of cataclysmic variables (CVs) and standard evolution models are resolved if a large fraction of CV binaries merge as a result of unstable mass transfer. Tidal disruption of the secondary forms a geometrically thick disk around the WD, which subsequently accretes at highly super-Eddington rates. Analytic estimates and numerical hydrodynamical simulations reveal that outflows from the accretion flow unbind a large fraction >~ 90% of the secondary at velocities ~500-1000 km/s within days of the merger. Hydrogen recombination in the expanding ejecta powers optical transient emission lasting about a month with a luminosity > 1e38 erg/s, similar to slow classical novae and luminous red novae from ordinary stellar mergers. Over longer timescales the mass accreted by the WD undergoes hydrogen shell burning, inflating the remnant into a giant of luminosity ~300-5000 L_sun, effective temperature T_eff ~ 3000 K and lifetime ~1e4-1e5 yr. We predict that ~1e3-1e4 Milky Way giants are CV merger products, potentially distinguishable by atypical surface abundances. We explore whether any Galactic historical slow classical novae are masquerading CV mergers by identifying four such post-nova systems with potential giant counterparts for which a CV merger origin cannot be ruled out. We address whether the historical transient CK Vul and its gaseous/dusty nebula resulted from a CV merger.
153 - Christian Knigge 2011
I review our current understanding of the evolution of cataclysmic variables (CVs). I first provide a brief introductory CV primer, in which I describe the physical structure of CVs, as well as their astrophysical significance. The main part of the review is divided into three parts. The first part outlines the theoretical principles of CV evolution, focusing specifically on the standard disrupted magnetic braking model. The second part describes how some of the most fundamental predictions this model are at last being test observationally. Finally, the third part describes recent efforts to actually reconstruct the evolution path of CVs empirically. Some of these efforts suggest that angular momentum loss below the period gap must be enhanced relative to the purely gravitational-radiation-driven losses assumed in the standard model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا