Do you want to publish a course? Click here

Breaking the degeneracy in magnetic cataclysmic variable X-ray spectral modeling using X-ray light curves

96   0   0.0 ( 0 )
 Added by Diogo Belloni
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of mock X-ray spectra and light curves of magnetic cataclysmic variables using an upgraded version of the 3D CYCLOPS code. This 3D representation of the accretion flow allows us to properly model total and partial occultation of the post-shock region by the white dwarf as well as the modulation of the X-ray light curves due to the phase-dependent extinction of the pre-shock region. We carried out detailed post-shock region modeling in a four-dimensional parameter space by varying the white dwarf mass and magnetic field strength as well as the magnetosphere radius and the specific accretion rate. To calculate the post-shock region temperature and density profiles, we assumed equipartition between ions and electrons, took into account the white dwarf gravitational potential, the finite size of the magnetosphere and a dipole-like magnetic field geometry, and considered cooling by both bremsstrahlung and cyclotron radiative processes. By investigating the impact of the parameters on the resulting X-ray continuum spectra, we show that there is an inevitable degeneracy in the four-dimensional parameter space investigated here, which compromises X-ray continuum spectral fitting strategies and can lead to incorrect parameter estimates. However, the inclusion of X-ray light curves in different energy ranges can break this degeneracy, and it therefore remains, in principle, possible to use X-ray data to derive fundamental parameters of magnetic cataclysmic variables, which represents an essential step toward understanding their formation and evolution.



rate research

Read More

95 - A. Schwope 2018
The space density of the various classes of cataclysmic variables (CVs) could only be weakly constrained in the past. Reasons were the small number of objects in complete X-ray flux-limited samples and the difficulty to derive precise distances to CVs. The former limitation still exists. Here the impact of Gaia parallaxes and implied distances on the space density of X-ray selected complete, flux-limited samples is studied. The samples are described in the literature, those of non-magnetic CVs are based on ROSAT (RBS - ROSAT Bright Survey & NEP -- North Ecliptic Pole), that of the Intermediate Polars stems from Swift/BAT. All CVs appear to be rarer than previously thought, although the new values are all within the errors of past studies. Upper limits at 90% confidence for the space densities of non-magnetic CVs are $rho_{rm RBS} < 1.1 times 10^{-6}$ pc$^{-3}$, and $rho_{rm RBS+NEP} < 5.1 times 10^{-6}$ p$^{-3}$, for an assumed scale height of $h=260$ pc and $rho_{rm IPs} < 1.3 times 10^{-7}$ p$^{-3}$ for the long-period Intermediate Polars at a scale height of 120 pc. Most of the distances to the IPs were under-estimated in the past. The upper limits to the space densities are only valid in the case where CVs do not have lower X-ray luminosities than the lowest-luminosity member of the sample. These results need consolidation by larger sample sizes, soon to be established through sensitive X-ray all-sky surveys to be performed with eROSITA on the Spektrum-X-Gamma mission.
Context: Physics behind the soft X-ray light curve asymmetries in Cygnus X-3, a well-known microquasar, was studied. AIMS: Observable effects of the jet close to the line-of-sight were investigated and interpreted within the frame of light curve physics. METHODS: The path of a hypothetical imprint of the jet, advected by the WR-wind, was computed and its crossing with the line-of-sight during the binary orbit determined. We explore the possibility that physically this imprint is a formation of dense clumps triggered by jet bow shocks in the wind (clumpy trail). Models for X-ray continuum and emission line light curves were constructed using two absorbers: mass columns along the line-of-sight of i) the WR wind and ii) the clumpy trail, as seen from the compact star. These model light curves were compared with the observed ones from the RXTE/ASM (continuum) and Chandra/HETG (emission lines). Results: We show that the shapes of the Cygnus X-3 light curves can be explained by the two absorbers using the inclination and true anomaly angles of the jet as derived in Dubus et al. (2010) from gamma-ray Fermi/LAT observations. The clumpy trail absorber is much larger for the lines than for the continuum. We suggest that the clumpy trail is a mixture of equilibrium and hot (shock heated) clumps. Conclusions: A possible way for studying jets in binary stars when the jet axis and the line-of-sight are close to each other is demonstrated. The X-ray continuum and emission line light curves of Cygnus X-3 can be explained by two absorbers: the WR companion wind plus an absorber lying in the jet path (clumpy trail). We propose that the clumpy trail absorber is due to dense clumps triggered by jet bow shocks.
The cataclysmic variable MV Lyr was present in the Kepler field yielding a light curve with the duration of almost 1500 days with 60 second cadence. Such high quality data of this nova-like system with obvious fast optical variability show multicomponent power density spectra. Our goal is to study the light curve from different point of view, and perform a shot profile analysis. We search for characteristics not discovered with standard power density spectrum based methods. The shot profile method identifies individual shots in the light curve, and averages them in order to get all substructures with typical time scales. We also tested the robustness of our analysis using simple shot noise model. We obtained mean profiles with multicomponent features. The shot profile method distinguishes substructures with similar time scales which appear as a single degenerate feature in power density spectra. Furthermore, this method yields the identification of another high frequency component in the power density spectra of Kepler and XMM-Newton data not detected so far. Moreover, we found side-lobes accompanied with the central spike, making the profile very similar to another Kepler data of blazar W2R 1926+42, and Ginga data of Cyg X-1. All three objects show similar time scale ratios of the rising vs. declining part of the central spikes, while the two binaries have also similar rising profiles of the shots described by a power-law function. The similarity of both binary shot profiles suggests that the shots originate from the same origin, e.g. aperiodic mass accretion in the accretion disc. Moreover, the similarity with the blazar may imply that the ejection fluctuations in the blazar jet are connected to accretion fluctuations driving the variability in binaries. This points out to connection between jet and the accretion disc.
It has been proposed that the charge exchange (CX) process at the interface between hot and cool interstellar gases could contribute significantly to the observed soft X-ray emission in star forming galaxies. We analyze the XMM-Newton/RGS spectrum of M82, using a newly developed CX model combined with a single-temperature thermal plasma to characterize the volume-filling hot gas. The CX process is largely responsible for not only the strongly enhanced forbidden lines of the K$alpha$ triplets of various He-like ions, but also good fractions of the Ly$alpha$ transitions of C VI (~87%), O VIII and N VII ($gtrsim$50%) as well. In total about a quarter of the X-ray flux in the RGS 6-30 AA band originates in the CX. We infer an ion incident rate of $3times10^{51},rm{s^{-1}}$ undergoing CX at the hot and cool gas interface, and an effective area of the interface as $sim2times10^{45},{rm cm^2}$ that is one order of magnitude larger than the cross section of the global biconic outflow. With the CX contribution accounted for, the best fit temperature of the hot gas is 0.6 keV, and the metal abundances are approximately solar. We further show that the same CX/thermal plasma model also gives an excellent description of the EPIC-pn spectrum of the outflow Cap, projected at 11.6 kpc away from the galactic disk of M82. This analysis demonstrates that the CX is potentially an important contributor to the X-ray emission from starburst galaxies and also an invaluable tool to probe the interface astrophysics.
RS Cae is the third target in our series of XMM-Newton observations of soft X-ray-dominated polars. Our observational campaign aims to better understand and describe the multiwavelength data, the physical properties of the system components, and the short- and long-term behavior of the component fluxes in RS Cae. We employ stellar atmosphere, stratified accretion-column, and widely used X-ray spectral models. We fit the XMM-Newton spectra, model the multiband light curves, and opt for a mostly consistent description of the spectral energy distribution. Results. Our XMM-Newton data of RS Cae are clearly dominated by soft X-ray emission. The X-ray light curves are shaped by emission from the main accretion region, which is visible over the whole orbital cycle, interrupted only by a stream eclipse. The optical light curves are formed by cyclotron and stream emission. The XMM-Newton X-ray spectra comprise a black-body-like and a plasma component at mean temperatures of 36eV and 7keV. The spectral fits give evidence of a partially absorbing and a reflection component. Multitemperature models, covering a broader temperature range in the X-ray emitting accretion regions, reproduce the spectra appropriately well. Including archival data, we describe the spectral energy distribution with a combination of models based on a consistent set of parameters and derive a lower limit estimate of the distance d > 750pc. Conclusions. The high bolometric soft-to-hard flux ratios and short-term variability of the (X-ray) light curves are characteristic of inhomogeneous accretion. RS Cae clearly belongs in the group of polars that show a very strong soft X-ray flux compared to their hard X-ray flux. The different black-body fluxes and similar hard X-ray and optical fluxes during the XMM-Newton and ROSAT observations show that soft and hard X-ray emission are not directly correlated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا