Do you want to publish a course? Click here

Absorption of Fermionic Dark Matter by Nuclear Targets

105   0   0.0 ( 0 )
 Added by Robert McGehee
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Absorption of fermionic dark matter leads to a range of distinct and novel signatures at dark matter direct detection and neutrino experiments. We study the possible signals from fermionic absorption by nuclear targets, which we divide into two classes of four Fermi operators: neutral and charged current. In the neutral current signal, dark matter is absorbed by a target nucleus and a neutrino is emitted. This results in a characteristically different nuclear recoil energy spectrum from that of elastic scattering. The charged current channel leads to induced $beta$ decays in isotopes which are stable in vacuum as well as shifts of the kinematic endpoint of $ beta$ spectra in unstable isotopes. To confirm the possibility of observing these signals in light of other constraints, we introduce UV completions of example higher dimensional operators that lead to fermionic absorption signals and study their phenomenology. Most prominently, dark matter which exhibits fermionic absorption signals is necessarily unstable leading to stringent bounds from indirect detection searches. Nevertheless, we find a large viable parameter space in which dark matter is sufficiently long lived and detectable in current and future experiments.



rate research

Read More

We study a new class of signals where fermionic dark matter is absorbed by bound electron targets. Fermionic absorption signals in direct detection and neutrino experiments are sensitive to dark matter with sub-MeV mass, probing a region of parameter space in which dark matter is otherwise challenging to detect. We calculate the rate and energy deposition spectrum in xenon-based detectors, making projections for current and future experiments. We present two possible models that display fermionic absorption by electrons and study the detection prospects in light of other constraints.
Inelastic dark matter and strongly interacting dark matter are poorly constrained by direct detection experiments since they both require the scattering event to deliver energy from the nucleus into the dark matter in order to have observable effects. We propose to test these scenarios by searching for the collisional de-excitation of meta-stable nuclear isomers by the dark matter particles. The longevity of these isomers is related to a strong suppression of $gamma$- and $beta$-transitions, typically inhibited by a large difference in the angular momentum for the nuclear transition. The collisional de-excitation by dark matter is possible since heavy dark matter particles can have a momentum exchange with the nucleus comparable to the inverse nuclear size, hence lifting tremendous angular momentum suppression of the nuclear transition. This de-excitation can be observed either by searching for the direct effects of the decaying isomer, or through the re-scattering or decay of excited dark matter states in a nearby conventional dark matter detector setup. Existing nuclear isomer sources such as naturally occurring $^{180m}$Ta, $^{137m}$Ba produced in decaying Cesium in nuclear waste, $^{177m}$Lu from medical waste, and $^{178m}$Hf from the Department of Energy storage can be combined with current dark matter detector technology to search for this class of dark matter.
We present a new class of direct detection signals; absorption of fermionic dark matter. We enumerate the operators through dimension six which lead to fermionic absorption, study their direct detection prospects, and summarize additional constraints on their suppression scale. Such dark matter is inherently unstable as there is no symmetry which prevents dark matter decays. Nevertheless, we show that fermionic dark matter absorption can be observed in direct detection and neutrino experiments while ensuring consistency with the observed dark matter abundance and required lifetime. For dark matter masses well below the GeV scale, dedicated searches for these signals at current and future experiments can probe orders of magnitude of unexplored parameter space.
Many existing and proposed experiments targeting QCD axion dark matter (DM) can also search for a broad class of axion-like particles (ALPs). We analyze the experimental sensitivities to electromagnetically-coupled ALP DM in different cosmological scenarios with the relic abundance set by the misalignment mechanism. We obtain benchmark DM targets for the standard thermal cosmology, a pre-nucleosynthesis period of early matter domination, and a period of kination. These targets are theoretically simple and assume $mathcal{O}(1)$ misalignment angles, avoiding fine-tuning of the initial conditions. We find that some experiments will have sensitivity to these ALP DM targets before they are sensitive to the QCD axion, and others can potentially reach interesting targets below the QCD band. The ALP DM abundance also depends on the origin of the ALP mass. Temperature-dependent masses that are generated by strong dynamics (as for the QCD axion) correspond to DM candidates with smaller decay constants, resulting in even better detection prospects.
We investigate a non-supersymmetric $SO(10)times U(1)_{rm PQ}$ axion model in which the spontaneous breaking of $U(1)_{rm PQ}$ occurs after inflation, and the axion domain wall problem is resolved by employing the Lazarides-Shafi mechanism. This requires the introduction of two fermion 10-plets, such that the surviving discrete symmetry from the explicit $U(1)_{rm PQ}$ breaking by QCD instantons is reduced from $Z_{12}$ to $Z_4$, where $Z_4$ coincides with the center of $SO(10)$ (more precisely $Spin(10)$). An unbroken $Z_2$ subgroup of $Z_4$ yields intermediate scale topologically stable strings, as well as a stable electroweak doublet non-thermal dark matter candidate from the fermion 10-plets with mass comparable to or somewhat smaller than the axion decay constant $f_{rm a}$. We present an explicit realization with inflation taken into account and which also incorporates non-thermal leptogenesis. The fermion dark matter mass lies in the $3times 10^{8}-10^{10}~{rm GeV}$ range and its contribution to the relic dark matter abundance can be comparable to that from the axion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا