Do you want to publish a course? Click here

Direct Detection Signals from Absorption of Fermionic Dark Matter

78   0   0.0 ( 0 )
 Added by Robert McGehee
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We present a new class of direct detection signals; absorption of fermionic dark matter. We enumerate the operators through dimension six which lead to fermionic absorption, study their direct detection prospects, and summarize additional constraints on their suppression scale. Such dark matter is inherently unstable as there is no symmetry which prevents dark matter decays. Nevertheless, we show that fermionic dark matter absorption can be observed in direct detection and neutrino experiments while ensuring consistency with the observed dark matter abundance and required lifetime. For dark matter masses well below the GeV scale, dedicated searches for these signals at current and future experiments can probe orders of magnitude of unexplored parameter space.



rate research

Read More

In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies E_R. The peaks of such signals are typically fairly broad, with Delta E_R/E_peak ~ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with a fantastic accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario, and find a wide range of parameters capable for producing such a peak. We compare the possible signals at other experiments, and find that such a particle could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal, and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation signature in both the amplitude of the signal and its shape.
The signatures of dark matter at the LHC commonly involve, in simplified scenarios, the production of a single particle plus large missing energy, from the undetected dark matter. However, in $Z$-portal scenarios anomaly cancellation requires the presence of extra dark leptons in the dark sector. We investigate the signatures of the minimal scenarios of this kind, which involve cascade decays of the extra $Z$ boson into the dark leptons, identifying a four-lepton signal as the most promising one. We estimate the sensitivity to this signal at the LHC, the high-luminosity LHC upgrade, a possible high-energy upgrade, as well as a future circular collider. For $Z$ couplings compatible with current dijet constraints the multilepton signals can reach the $5sigma$ level already at Run 2 of the LHC. At future colliders, couplings two orders of magnitude smaller than the electroweak coupling can be probed with $5sigma$ sensitivity.
We revisit the parameter space of singlet fermionic cold dark matter model in order to determine the role of the mixing angle between the standard model Higgs and new singlet one. Furthermore, we restudy the direct detection constraints with the updated and new experimental data. As an important conclusion, this model is completely excluded by recent XENON100, PandaX II and LUX data.
Direct detection of light dark matter (DM), below the GeV scale, through electron recoil can be efficient if DM has a velocity well above the virial value of $vsim 10^{-3}$. We point out that if there is a long range attractive force sourced by bulk ordinary matter, i.e. baryons or electrons, DM can be accelerated towards the Earth and reach velocities $vsim 0.1$ near the Earths surface. In this attractive scenario, all DM will be boosted to high velocities by the time it reaches direct detection apparatuses in laboratories. Furthermore, the attractive force leads to an enhanced DM number density at the Earth facilitating DM detection even more. We elucidate the implications of this scenario for electron recoil direct detection experiments and find parameters that could lead to potential signals, while being consistent with stellar cooling and other bounds. Our scenario can potentially explain the recent excess in electron recoil signals reported by the XENON1T experiment in the $sim$ keV energy regime as well as the hint for non-standard stellar cooling.
104 - Jeff A. Dror , Gilly Elor , 2019
Absorption of fermionic dark matter leads to a range of distinct and novel signatures at dark matter direct detection and neutrino experiments. We study the possible signals from fermionic absorption by nuclear targets, which we divide into two classes of four Fermi operators: neutral and charged current. In the neutral current signal, dark matter is absorbed by a target nucleus and a neutrino is emitted. This results in a characteristically different nuclear recoil energy spectrum from that of elastic scattering. The charged current channel leads to induced $beta$ decays in isotopes which are stable in vacuum as well as shifts of the kinematic endpoint of $ beta$ spectra in unstable isotopes. To confirm the possibility of observing these signals in light of other constraints, we introduce UV completions of example higher dimensional operators that lead to fermionic absorption signals and study their phenomenology. Most prominently, dark matter which exhibits fermionic absorption signals is necessarily unstable leading to stringent bounds from indirect detection searches. Nevertheless, we find a large viable parameter space in which dark matter is sufficiently long lived and detectable in current and future experiments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا