We study a new class of signals where fermionic dark matter is absorbed by bound electron targets. Fermionic absorption signals in direct detection and neutrino experiments are sensitive to dark matter with sub-MeV mass, probing a region of parameter space in which dark matter is otherwise challenging to detect. We calculate the rate and energy deposition spectrum in xenon-based detectors, making projections for current and future experiments. We present two possible models that display fermionic absorption by electrons and study the detection prospects in light of other constraints.
Absorption of fermionic dark matter leads to a range of distinct and novel signatures at dark matter direct detection and neutrino experiments. We study the possible signals from fermionic absorption by nuclear targets, which we divide into two classes of four Fermi operators: neutral and charged current. In the neutral current signal, dark matter is absorbed by a target nucleus and a neutrino is emitted. This results in a characteristically different nuclear recoil energy spectrum from that of elastic scattering. The charged current channel leads to induced $beta$ decays in isotopes which are stable in vacuum as well as shifts of the kinematic endpoint of $ beta$ spectra in unstable isotopes. To confirm the possibility of observing these signals in light of other constraints, we introduce UV completions of example higher dimensional operators that lead to fermionic absorption signals and study their phenomenology. Most prominently, dark matter which exhibits fermionic absorption signals is necessarily unstable leading to stringent bounds from indirect detection searches. Nevertheless, we find a large viable parameter space in which dark matter is sufficiently long lived and detectable in current and future experiments.
Direct detection experiments turn to lose sensitivity of searching for a sub-MeV light dark matter candidate due to the threshold of recoil energy. However, such light dark matter particles can be accelerated by energetic cosmic-rays such that they can be detected with existing detectors. We derive the constraints on the scattering of a boosted light dark matter and electron from the XENON100/1T experiment. We illustrate that the energy dependence of the cross section plays a crucial role in improving both the detection sensitivity and also the complementarity of direct detection and other experiments.
We extend the calculation of dark matter direct detection rates via electronic transitions in general dielectric crystal targets, combining state-of-the-art density functional theory calculations of electronic band structures and wave functions near the band gap, with semi-analytic approximations to include additional states farther away from the band gap. We show, in particular, the importance of all-electron reconstruction for recovering large momentum components of electronic wave functions, which, together with the inclusion of additional states, has a significant impact on direct detection rates, especially for heavy mediator models and at $mathcal{O}(10,text{eV})$ and higher energy depositions. Applying our framework to silicon and germanium (that have been established already as sensitive dark matter detectors), we find that our extended calculations can appreciably change the detection prospects. Our calculational framework is implemented in an open-source program $texttt{EXCEED-DM}$ (EXtended Calculation of Electronic Excitations for Direct detection of Dark Matter), to be released in an upcoming publication.
We present a new class of direct detection signals; absorption of fermionic dark matter. We enumerate the operators through dimension six which lead to fermionic absorption, study their direct detection prospects, and summarize additional constraints on their suppression scale. Such dark matter is inherently unstable as there is no symmetry which prevents dark matter decays. Nevertheless, we show that fermionic dark matter absorption can be observed in direct detection and neutrino experiments while ensuring consistency with the observed dark matter abundance and required lifetime. For dark matter masses well below the GeV scale, dedicated searches for these signals at current and future experiments can probe orders of magnitude of unexplored parameter space.
Self-interactions within the dark sector could clump dark matter into heavy composite states with low number density, leading to a highly suppressed event rate in existing direct detection experiments. However, the large interaction cross section between such ultra-heavy dark matter (UHDM) and standard model matter results in a distinctive and compelling signature: long, straight damage tracks as they pass through and scatter with matter. In this work, we propose using geologically old quartz samples as large-exposure detectors for UHDM. We describe a high-resolution readout method based on electron microscopy, characterize the most favorable geological samples for this approach, and study its reach in a simple model of the dark sector. The advantage of this search strategy is two-fold: the age of geological quartz compensates for the low number density of UHDMs, and the distinct geometry of the damage track serves as a high-fidelity background rejection tool.