Do you want to publish a course? Click here

Cross-modal Zero-shot Hashing

71   0   0.0 ( 0 )
 Added by Guoxian Yu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Hashing has been widely studied for big data retrieval due to its low storage cost and fast query speed. Zero-shot hashing (ZSH) aims to learn a hashing model that is trained using only samples from seen categories, but can generalize well to samples of unseen categories. ZSH generally uses category attributes to seek a semantic embedding space to transfer knowledge from seen categories to unseen ones. As a result, it may perform poorly when labeled data are insufficient. ZSH methods are mainly designed for single-modality data, which prevents their application to the widely spread multi-modal data. On the other hand, existing cross-modal hashing solutions assume that all the modalities share the same category labels, while in practice the labels of different data modalities may be different. To address these issues, we propose a general Cross-modal Zero-shot Hashing (CZHash) solution to effectively leverage unlabeled and labeled multi-modality data with different label spaces. CZHash first quantifies the composite similarity between instances using label and feature information. It then defines an objective function to achieve deep feature learning compatible with the composite similarity preserving, category attribute space learning, and hashing coding function learning. CZHash further introduces an alternative optimization procedure to jointly optimize these learning objectives. Experiments on benchmark multi-modal datasets show that CZHash significantly outperforms related representative hashing approaches both on effectiveness and adaptability.



rate research

Read More

175 - Xuanwu Liu , Jun Wang , Guoxian Yu 2019
Hashing has been widely adopted for large-scale data retrieval in many domains, due to its low storage cost and high retrieval speed. Existing cross-modal hashing methods optimistically assume that the correspondence between training samples across modalities are readily available. This assumption is unrealistic in practical applications. In addition, these methods generally require the same number of samples across different modalities, which restricts their flexibility. We propose a flexible cross-modal hashing approach (Flex-CMH) to learn effective hashing codes from weakly-paired data, whose correspondence across modalities are partially (or even totally) unknown. FlexCMH first introduces a clustering-based matching strategy to explore the local structure of each cluster, and thus to find the potential correspondence between clusters (and samples therein) across modalities. To reduce the impact of an incomplete correspondence, it jointly optimizes in a unified objective function the potential correspondence, the cross-modal hashing functions derived from the correspondence, and a hashing quantitative loss. An alternative optimization technique is also proposed to coordinate the correspondence and hash functions, and to reinforce the reciprocal effects of the two objectives. Experiments on publicly multi-modal datasets show that FlexCMH achieves significantly better results than state-of-the-art methods, and it indeed offers a high degree of flexibility for practical cross-modal hashing tasks.
127 - Qing-Yuan Jiang , Wu-Jun Li 2016
Due to its low storage cost and fast query speed, cross-modal hashing (CMH) has been widely used for similarity search in multimedia retrieval applications. However, almost all existing CMH methods are based on hand-crafted features which might not be optimally compatible with the hash-code learning procedure. As a result, existing CMH methods with handcrafted features may not achieve satisfactory performance. In this paper, we propose a novel cross-modal hashing method, called deep crossmodal hashing (DCMH), by integrating feature learning and hash-code learning into the same framework. DCMH is an end-to-end learning framework with deep neural networks, one for each modality, to perform feature learning from scratch. Experiments on two real datasets with text-image modalities show that DCMH can outperform other baselines to achieve the state-of-the-art performance in cross-modal retrieval applications.
Supervised cross-modal hashing has gained increasing research interest on large-scale retrieval task owning to its satisfactory performance and efficiency. However, it still has some challenging issues to be further studied: 1) most of them fail to well preserve the semantic correlations in hash codes because of the large heterogenous gap; 2) most of them relax the discrete constraint on hash codes, leading to large quantization error and consequent low performance; 3) most of them suffer from relatively high memory cost and computational complexity during training procedure, which makes them unscalable. In this paper, to address above issues, we propose a supervised cross-modal hashing method based on matrix factorization dubbed Efficient Discrete Supervised Hashing (EDSH). Specifically, collective matrix factorization on heterogenous features and semantic embedding with class labels are seamlessly integrated to learn hash codes. Therefore, the feature based similarities and semantic correlations can be both preserved in hash codes, which makes the learned hash codes more discriminative. Then an efficient discrete optimal algorithm is proposed to handle the scalable issue. Instead of learning hash codes bit-by-bit, hash codes matrix can be obtained directly which is more efficient. Extensive experimental results on three public real-world datasets demonstrate that EDSH produces a superior performance in both accuracy and scalability over some existing cross-modal hashing methods.
92 - Jian Zhang , Yuxin Peng , 2017
Cross-modal hashing aims to map heterogeneous multimedia data into a common Hamming space, which can realize fast and flexible retrieval across different modalities. Unsupervised cross-modal hashing is more flexible and applicable than supervised methods, since no intensive labeling work is involved. However, existing unsupervised methods learn hashing functions by preserving inter and intra correlations, while ignoring the underlying manifold structure across different modalities, which is extremely helpful to capture meaningful nearest neighbors of different modalities for cross-modal retrieval. To address the above problem, in this paper we propose an Unsupervised Generative Adversarial Cross-modal Hashing approach (UGACH), which makes full use of GANs ability for unsupervised representation learning to exploit the underlying manifold structure of cross-modal data. The main contributions can be summarized as follows: (1) We propose a generative adversarial network to model cross-modal hashing in an unsupervised fashion. In the proposed UGACH, given a data of one modality, the generative model tries to fit the distribution over the manifold structure, and select informative data of another modality to challenge the discriminative model. The discriminative model learns to distinguish the generated data and the true positive data sampled from correlation graph to achieve better retrieval accuracy. These two models are trained in an adversarial way to improve each other and promote hashing function learning. (2) We propose a correlation graph based approach to capture the underlying manifold structure across different modalities, so that data of different modalities but within the same manifold can have smaller Hamming distance and promote retrieval accuracy. Extensive experiments compared with 6 state-of-the-art methods verify the effectiveness of our proposed approach.
Supervised cross-modal hashing aims to embed the semantic correlations of heterogeneous modality data into the binary hash codes with discriminative semantic labels. Because of its advantages on retrieval and storage efficiency, it is widely used for solving efficient cross-modal retrieval. However, existing researches equally handle the different tasks of cross-modal retrieval, and simply learn the same couple of hash functions in a symmetric way for them. Under such circumstance, the uniqueness of different cross-modal retrieval tasks are ignored and sub-optimal performance may be brought. Motivated by this, we present a Task-adaptive Asymmetric Deep Cross-modal Hashing (TA-ADCMH) method in this paper. It can learn task-adaptive hash functions for two sub-retrieval tasks via simultaneous modality representation and asymmetric hash learning. Unlike previous cross-modal hashing approaches, our learning framework jointly optimizes semantic preserving that transforms deep features of multimedia data into binary hash codes, and the semantic regression which directly regresses query modality representation to explicit label. With our model, the binary codes can effectively preserve semantic correlations across different modalities, meanwhile, adaptively capture the query semantics. The superiority of TA-ADCMH is proved on two standard datasets from many aspects.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا