No Arabic abstract
Cross-modal hashing aims to map heterogeneous multimedia data into a common Hamming space, which can realize fast and flexible retrieval across different modalities. Unsupervised cross-modal hashing is more flexible and applicable than supervised methods, since no intensive labeling work is involved. However, existing unsupervised methods learn hashing functions by preserving inter and intra correlations, while ignoring the underlying manifold structure across different modalities, which is extremely helpful to capture meaningful nearest neighbors of different modalities for cross-modal retrieval. To address the above problem, in this paper we propose an Unsupervised Generative Adversarial Cross-modal Hashing approach (UGACH), which makes full use of GANs ability for unsupervised representation learning to exploit the underlying manifold structure of cross-modal data. The main contributions can be summarized as follows: (1) We propose a generative adversarial network to model cross-modal hashing in an unsupervised fashion. In the proposed UGACH, given a data of one modality, the generative model tries to fit the distribution over the manifold structure, and select informative data of another modality to challenge the discriminative model. The discriminative model learns to distinguish the generated data and the true positive data sampled from correlation graph to achieve better retrieval accuracy. These two models are trained in an adversarial way to improve each other and promote hashing function learning. (2) We propose a correlation graph based approach to capture the underlying manifold structure across different modalities, so that data of different modalities but within the same manifold can have smaller Hamming distance and promote retrieval accuracy. Extensive experiments compared with 6 state-of-the-art methods verify the effectiveness of our proposed approach.
Cross-modal hashing aims to map heterogeneous multimedia data into a common Hamming space, which can realize fast and flexible retrieval across different modalities. Supervised cross-modal hashing methods have achieved considerable progress by incorporating semantic side information. However, they mainly have two limitations: (1) Heavily rely on large-scale labeled cross-modal training data which are labor intensive and hard to obtain. (2) Ignore the rich information contained in the large amount of unlabeled data across different modalities, especially the margin examples that are easily to be incorrectly retrieved, which can help to model the correlations. To address these problems, in this paper we propose a novel Semi-supervised Cross-Modal Hashing approach by Generative Adversarial Network (SCH-GAN). We aim to take advantage of GANs ability for modeling data distributions to promote cross-modal hashing learning in an adversarial way. The main contributions can be summarized as follows: (1) We propose a novel generative adversarial network for cross-modal hashing. In our proposed SCH-GAN, the generative model tries to select margin examples of one modality from unlabeled data when giving a query of another modality. While the discriminative model tries to distinguish the selected examples and true positive examples of the query. These two models play a minimax game so that the generative model can promote the hashing performance of discriminative model. (2) We propose a reinforcement learning based algorithm to drive the training of proposed SCH-GAN. The generative model takes the correlation score predicted by discriminative model as a reward, and tries to select the examples close to the margin to promote discriminative model by maximizing the margin between positive and negative data. Experiments on 3 widely-used datasets verify the effectiveness of our proposed approach.
Generative adversarial network (GAN) has achieved impressive success on cross-domain generation, but it faces difficulty in cross-modal generation due to the lack of a common distribution between heterogeneous data. Most existing methods of conditional based cross-modal GANs adopt the strategy of one-directional transfer and have achieved preliminary success on text-to-image transfer. Instead of learning the transfer between different modalities, we aim to learn a synchronous latent space representing the cross-modal common concept. A novel network component named synchronizer is proposed in this work to judge whether the paired data is synchronous/corresponding or not, which can constrain the latent space of generators in the GANs. Our GAN model, named as SyncGAN, can successfully generate synchronous data (e.g., a pair of image and sound) from identical random noise. For transforming data from one modality to another, we recover the latent code by inverting the mappings of a generator and use it to generate data of different modality. In addition, the proposed model can achieve semi-supervised learning, which makes our model more flexible for practical applications.
Due to its low storage cost and fast query speed, cross-modal hashing (CMH) has been widely used for similarity search in multimedia retrieval applications. However, almost all existing CMH methods are based on hand-crafted features which might not be optimally compatible with the hash-code learning procedure. As a result, existing CMH methods with handcrafted features may not achieve satisfactory performance. In this paper, we propose a novel cross-modal hashing method, called deep crossmodal hashing (DCMH), by integrating feature learning and hash-code learning into the same framework. DCMH is an end-to-end learning framework with deep neural networks, one for each modality, to perform feature learning from scratch. Experiments on two real datasets with text-image modalities show that DCMH can outperform other baselines to achieve the state-of-the-art performance in cross-modal retrieval applications.
Hashing has been widely adopted for large-scale data retrieval in many domains, due to its low storage cost and high retrieval speed. Existing cross-modal hashing methods optimistically assume that the correspondence between training samples across modalities are readily available. This assumption is unrealistic in practical applications. In addition, these methods generally require the same number of samples across different modalities, which restricts their flexibility. We propose a flexible cross-modal hashing approach (Flex-CMH) to learn effective hashing codes from weakly-paired data, whose correspondence across modalities are partially (or even totally) unknown. FlexCMH first introduces a clustering-based matching strategy to explore the local structure of each cluster, and thus to find the potential correspondence between clusters (and samples therein) across modalities. To reduce the impact of an incomplete correspondence, it jointly optimizes in a unified objective function the potential correspondence, the cross-modal hashing functions derived from the correspondence, and a hashing quantitative loss. An alternative optimization technique is also proposed to coordinate the correspondence and hash functions, and to reinforce the reciprocal effects of the two objectives. Experiments on publicly multi-modal datasets show that FlexCMH achieves significantly better results than state-of-the-art methods, and it indeed offers a high degree of flexibility for practical cross-modal hashing tasks.
Hashing has been widely studied for big data retrieval due to its low storage cost and fast query speed. Zero-shot hashing (ZSH) aims to learn a hashing model that is trained using only samples from seen categories, but can generalize well to samples of unseen categories. ZSH generally uses category attributes to seek a semantic embedding space to transfer knowledge from seen categories to unseen ones. As a result, it may perform poorly when labeled data are insufficient. ZSH methods are mainly designed for single-modality data, which prevents their application to the widely spread multi-modal data. On the other hand, existing cross-modal hashing solutions assume that all the modalities share the same category labels, while in practice the labels of different data modalities may be different. To address these issues, we propose a general Cross-modal Zero-shot Hashing (CZHash) solution to effectively leverage unlabeled and labeled multi-modality data with different label spaces. CZHash first quantifies the composite similarity between instances using label and feature information. It then defines an objective function to achieve deep feature learning compatible with the composite similarity preserving, category attribute space learning, and hashing coding function learning. CZHash further introduces an alternative optimization procedure to jointly optimize these learning objectives. Experiments on benchmark multi-modal datasets show that CZHash significantly outperforms related representative hashing approaches both on effectiveness and adaptability.