No Arabic abstract
An automated metric to evaluate dialogue quality is vital for optimizing data driven dialogue management. The common approach of relying on explicit user feedback during a conversation is intrusive and sparse. Current models to estimate user satisfaction use limited feature sets and rely on annotation schemes with low inter-rater reliability, limiting generalizability to conversations spanning multiple domains. To address these gaps, we created a new Response Quality annotation scheme, based on which we developed turn-level User Satisfaction metric. We introduced five new domain-independent feature sets and experimented with six machine learning models to estimate the new satisfaction metric. Using Response Quality annotation scheme, across randomly sampled single and multi-turn conversations from 26 domains, we achieved high inter-annotator agreement (Spearmans rho 0.94). The Response Quality labels were highly correlated (0.76) with explicit turn-level user ratings. Gradient boosting regression achieved best correlation of ~0.79 between predicted and annotated user satisfaction labels. Multi Layer Perceptron and Gradient Boosting regression models generalized to an unseen domain better (linear correlation 0.67) than other models. Finally, our ablation study verified that our novel features significantly improved model performance.
A dialogue is essentially a multi-turn interaction among interlocutors. Effective evaluation metrics should reflect the dynamics of such interaction. Existing automatic metrics are focused very much on the turn-level quality, while ignoring such dynamics. To this end, we propose DynaEval, a unified automatic evaluation framework which is not only capable of performing turn-level evaluation, but also holistically considers the quality of the entire dialogue. In DynaEval, the graph convolutional network (GCN) is adopted to model a dialogue in totality, where the graph nodes denote each individual utterance and the edges represent the dependency between pairs of utterances. A contrastive loss is then applied to distinguish well-formed dialogues from carefully constructed negative samples. Experiments show that DynaEval significantly outperforms the state-of-the-art dialogue coherence model, and correlates strongly with human judgements across multiple dialogue evaluation aspects at both turn and dialogue level.
Evaluation is crucial in the development process of task-oriented dialogue systems. As an evaluation method, user simulation allows us to tackle issues such as scalability and cost-efficiency, making it a viable choice for large-scale automatic evaluation. To help build a human-like user simulator that can measure the quality of a dialogue, we propose the following task: simulating user satisfaction for the evaluation of task-oriented dialogue systems. The purpose of the task is to increase the evaluation power of user simulations and to make the simulation more human-like. To overcome a lack of annotated data, we propose a user satisfaction annotation dataset, USS, that includes 6,800 dialogues sampled from multiple domains, spanning real-world e-commerce dialogues, task-oriented dialogues constructed through Wizard-of-Oz experiments, and movie recommendation dialogues. All user utterances in those dialogues, as well as the dialogues themselves, have been labeled based on a 5-level satisfaction scale. We also share three baseline methods for user satisfaction prediction and action prediction tasks. Experiments conducted on the USS dataset suggest that distributed representations outperform feature-based methods. A model based on hierarchical GRUs achieves the best performance in in-domain user satisfaction prediction, while a BERT-based model has better cross-domain generalization ability.
Dialogue policy optimisation via reinforcement learning requires a large number of training interactions, which makes learning with real users time consuming and expensive. Many set-ups therefore rely on a user simulator instead of humans. These user simulators have their own problems. While hand-coded, rule-based user simulators have been shown to be sufficient in small, simple domains, for complex domains the number of rules quickly becomes intractable. State-of-the-art data-driven user simulators, on the other hand, are still domain-dependent. This means that adaptation to each new domain requires redesigning and retraining. In this work, we propose a domain-independent transformer-based user simulator (TUS). The structure of our TUS is not tied to a specific domain, enabling domain generalisation and learning of cross-domain user behaviour from data. We compare TUS with the state of the art using automatic as well as human evaluations. TUS can compete with rule-based user simulators on pre-defined domains and is able to generalise to unseen domains in a zero-shot fashion.
Medical dialogue systems are promising in assisting in telemedicine to increase access to healthcare services, improve the quality of patient care, and reduce medical costs. To facilitate the research and development of medical dialogue systems, we build two large-scale medical dialogue datasets: MedDialog-EN and MedDialog-CN. MedDialog-EN is an English dataset containing 0.3 million conversations between patients and doctors and 0.5 million utterances. MedDialog-CN is an Chinese dataset containing 1.1 million conversations and 4 million utterances. To our best knowledge, MedDialog-(EN,CN) are the largest medical dialogue datasets to date. The dataset is available at https://github.com/UCSD-AI4H/Medical-Dialogue-System
Digital assistants are experiencing rapid growth due to their ability to assist users with day-to-day tasks where most dialogues are happening multi-turn. However, evaluating multi-turn dialogues remains challenging, especially at scale. We suggest a context-sensitive method to estimate the turn-level satisfaction for dialogue considering various types of user preferences. The costs of interactions between users and dialogue systems are formulated using a budget consumption concept. We assume users have an initial interaction budget for a dialogue formed based on the task complexity and that each turn has a cost. When the task is completed, or the budget has been exhausted, users quit the dialogue. We demonstrate our methods effectiveness by extensive experimentation with a simulated dialogue platform and real multi-turn dialogues.