Do you want to publish a course? Click here

Observations of the FSRQ 3C 279 during the flaring state of 2017 and 2018 with H.E.S.S

295   0   0.0 ( 0 )
 Added by Gabriel Emery
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Flat Spectrum Radio Quasar 3C 279 has been very active since a few years with multiple flaring events occurring at high energies. As part of the H.E.S.S. Target of Opportunity program, 3C 279 was observed multiple times in 2017 and 2018 following high states in optical (February and March 2017) or at high energies as seen with Fermi-LAT (June 2017, January, February and June 2018). While in January 2018 H.E.S.S. detected an unexpected very high energy (VHE) flare at the end of the MeV-GeV flaring state, in June 2018 it was possible to follow almost continuously the decaying part of a strong Fermi-LAT flare, observing with the full array for several nights after the peak of the GeV gamma-ray emission. This has lead to the detection of the source with very high significance. We present here the temporal and spectral results of the H.E.S.S. II dataset together with an overview of the strong multi-wavelength activity seen from 3C 279 between 2017 and 2018.



rate research

Read More

89 - Raj Prince 2020
A multiwavelength temporal and spectral analysis of flares of 3C 279 during November 2017--July 2018 are presented in this work. Three bright gamma-ray flares were observed simultaneously in X-ray and Optical/UV along with a prolonged quiescent state. A harder-when-brighter trend is observed in both gamma-rays and X-rays during the flaring period. The gamma-ray light curve for all the flares are binned in one-day time bins and a day scale variability is observed. Variability time constrains the size and location of the emission region to 2.1$times$10$^{16}$ cm and 4.4$times$10$^{17}$ cm, respectively. The fractional variability reveals that the source is more than 100% variable in gamma-rays and it decreases towards the lower energy. A cross-correlation study of the emission from different wavebands is done using the textit{DCF} method, which shows a strong correlation between them without any time lags. The zero time lag between different wavebands suggest their co-spatial origin. This is the first time 3C 279 has shown a strong correlation between gamma-rays and X-rays emission with zero time lag. A single zone emission model was adopted to model the multiwavelength SEDs by using the publicly available code GAMERA. The study reveals that a higher jet power in electrons is required to explain the gamma-ray flux during the flaring state, as much as, ten times of that required for the quiescent state. However, more jet power in magnetic field has been observed during the quiescent state compared to the flaring state.
The flat spectrum radio quasar 3C 279 is known to exhibit pronounced variability in the high-energy ($100,$MeV$<E<100,$GeV) $gamma$-ray band, which is continuously monitored with Fermi-LAT. During two periods of high activity in April 2014 and June 2015 Target-of-Opportunity observations were undertaken with H.E.S.S. in the very-high-energy (VHE, $E>100,$GeV) $gamma$-ray domain. While the observation in 2014 provides an upper limit, the observation in 2015 results in a signal with $8.7,sigma$ significance above an energy threshold of $66,$GeV. No VHE variability has been detected during the 2015 observations. The VHE photon spectrum is soft and described by a power-law index of $4.2pm 0.3$. The H.E.S.S. data along with a detailed and contemporaneous multiwavelength data set provide constraints on the physical parameters of the emission region. The minimum distance of the emission region from the central black hole is estimated using two plausible geometries of the broad-line region and three potential intrinsic spectra. The emission region is confidently placed at $rgtrsim 1.7times10^{17},$cm from the black hole, i.e., beyond the assumed distance of the broad-line region. Time-dependent leptonic and lepto-hadronic one-zone models are used to describe the evolution of the 2015 flare. Neither model can fully reproduce the observations, despite testing various parameter sets. Furthermore, the H.E.S.S. data are used to derive constraints on Lorentz invariance violation given the large redshift of 3C 279.
We report the results of a multi-band observing campaign on the famous blazar 3C 279 conducted during a phase of increased activity from 2013 December to 2014 April, including first observations of it with NuSTAR. The $gamma$-ray emission of the source measured by Fermi-LAT showed multiple distinct flares reaching the highest flux level measured in this object since the beginning of the Fermi mission, with $F(E > 100,{rm MeV})$ of $10^{-5}$ photons cm$^{-2}$ s$^{-1}$, and with a flux doubling time scale as short as 2 hours. The $gamma$-ray spectrum during one of the flares was very hard, with an index of $Gamma_gamma = 1.7 pm 0.1$, which is rarely seen in flat spectrum radio quasars. The lack of concurrent optical variability implies a very high Compton dominance parameter $L_gamma/L_{rm syn} > 300$. Two 1-day NuSTAR observations with accompanying Swift pointings were separated by 2 weeks, probing different levels of source activity. While the 0.5$-$70 keV X-ray spectrum obtained during the first pointing, and fitted jointly with Swift-XRT is well-described by a simple power law, the second joint observation showed an unusual spectral structure: the spectrum softens by $DeltaGamma_{rm X} simeq 0.4$ at $sim$4 keV. Modeling the broad-band SED during this flare with the standard synchrotron plus inverse Compton model requires: (1) the location of the $gamma$-ray emitting region is comparable with the broad line region radius, (2) a very hard electron energy distribution index $p simeq 1$, (3) total jet power significantly exceeding the accretion disk luminosity $L_{rm j}/L_{rm d} gtrsim 10$, and (4) extremely low jet magnetization with $L_{rm B}/L_{rm j} lesssim 10^{-4}$. We also find that single-zone models that match the observed $gamma$-ray and optical spectra cannot satisfactorily explain the production of X-ray emission.
The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {it the Hard X-ray Modulation Telescope} ({it Insight-rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to $rm 150~keV$. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with $Brm sim 10^{13}~G$, $Drm sim 6~kpc$ and peak luminosity of $rm >10^{39}~erg~s^{-1}$ which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.
The flat spectrum radio quasar (FSRQ) PKS 1510-089 (z=0.361) is known for its complex multiwavelength behavior. It has been monitored regularly at very high energy (VHE, $E>100,$GeV) gamma-rays with H.E.S.S. since its discovery in 2009 in order to study the unknown behavior of FSRQs in quiescence at VHE, as well as the flux evolution around flaring events. Given the expected strong cooling of electrons and the absorption of VHE emission within the broad-line region, a detection of PKS 1510-089 at VHE in a quiescent state would be an important result, implying an acceleration and emission region on scales beyond the broad-line region. The H.E.S.S. monitoring has been intensified since 2015 and is complemented by monitoring at high energy ($E>100,$MeV) gamma-rays with Fermi, at X-rays with Swift-XRT, and at optical frequencies with ATOM. The dense lightcurves allow for the first time detailed comparison studies between these energy bands. The source has been active in several frequency bands for a large fraction of the observation time frames. Yet, we do not find obvious correlations between the VHE and the other bands over the observed time frame indicating a non-trivial interplay of the acceleration, cooling and radiative processes. It also implies a rich variety in flaring behavior, which makes this source difficult to interpret within a unique theoretical framework.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا