Do you want to publish a course? Click here

Monitoring of the FSRQ PKS 1510-089 with H.E.S.S

125   0   0.0 ( 0 )
 Added by Michael Zacharias
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The flat spectrum radio quasar (FSRQ) PKS 1510-089 (z=0.361) is known for its complex multiwavelength behavior. It has been monitored regularly at very high energy (VHE, $E>100,$GeV) gamma-rays with H.E.S.S. since its discovery in 2009 in order to study the unknown behavior of FSRQs in quiescence at VHE, as well as the flux evolution around flaring events. Given the expected strong cooling of electrons and the absorption of VHE emission within the broad-line region, a detection of PKS 1510-089 at VHE in a quiescent state would be an important result, implying an acceleration and emission region on scales beyond the broad-line region. The H.E.S.S. monitoring has been intensified since 2015 and is complemented by monitoring at high energy ($E>100,$MeV) gamma-rays with Fermi, at X-rays with Swift-XRT, and at optical frequencies with ATOM. The dense lightcurves allow for the first time detailed comparison studies between these energy bands. The source has been active in several frequency bands for a large fraction of the observation time frames. Yet, we do not find obvious correlations between the VHE and the other bands over the observed time frame indicating a non-trivial interplay of the acceleration, cooling and radiative processes. It also implies a rich variety in flaring behavior, which makes this source difficult to interpret within a unique theoretical framework.



rate research

Read More

The flat spectrum radio quasar PKS 1510-089 is a monitored target in many wavelength bands due to its high variability. It was detected as a very-high-energy (VHE) $gamma$-ray emitter with H.E.S.S. in 2009, and has since been a regular target of VHE observations by the imaging Cherenkov observatories H.E.S.S. and MAGIC. In this paper, we summarize the current state of results focusing on the monitoring effort with H.E.S.S. and the discovery of a particularly strong VHE flare in 2016 with H.E.S.S. and MAGIC. While the source has now been established as a weak, but regular emitter at VHE, no correlation with other energy bands has been established. This is underlined by the 2016 VHE flare, where the detected optical and high-energy $gamma$-ray counterparts evolve differently than the VHE flux.
The quasar PKS 1510-089 (z=0.361) was observed with the H.E.S.S. array of imaging atmospheric Cherenkov telescopes during high states in the optical and GeV bands, to search for very high energy (VHE, defined as E >= 0.1 TeV) emission. VHE gamma-rays were detected with a statistical significance of 9.2 standard deviations in 15.8 hours of H.E.S.S. data taken during March and April 2009. A VHE integral flux of I(0.15 TeV < E < 1.0 TeV) = (1.0 +- 0.2 (stat) +- 0.2 (sys) x 10^{-11} cm^{-2}s^{-1} is measured. The best-fit power law to the VHE data has a photon index of Gamma=5.4 +- 0.7 (stat) +- 0.3 (sys). The GeV and optical light curves show pronounced variability during the period of H.E.S.S. observations. However, there is insufficient evidence to claim statistically significant variability in the VHE data. Because of its relatively high redshift, the VHE flux from PKS 1510-089 should suffer considerable attenuation in the intergalactic space due to the extragalactic background light (EBL). Hence, the measured gamma-ray spectrum is used to derive upper limits on the opacity due to EBL, which are found to be comparable with the previously derived limits from relatively-nearby BL Lac objects. Unlike typical VHE-detected blazars where the broadband spectrum is dominated by non-thermal radiation at all wavelengths, the quasar PKS 1510-089 has a bright thermal component in the optical to UV frequency band. Among all VHE detected blazars, PKS 1510-089 has the most luminous broad line region (BLR). The detection of VHE emission from this quasar indicates a low level of gamma-gamma absorption on the internal optical to UV photon field.
The blazar PKS 1510-089 was the first of the flat spectrum radio quasar type, which had been detected simultaneously by a ground based Cherenkov telescope (H.E.S.S.) and the LAT instrument on board the Fermi satellite. Given the strong broad line region emission defining this blazar class, and the resulting high optical depth for VHE ($E>100,$GeV) $gamma$-rays, it was surprising to detect VHE emission from such an object. In May 2015, PKS 1510-089 exhibited high states throughout the electromagnetic spectrum. Target of Opportunity observations with the H.E.S.S. experiment revealed strong and unprecedented variability of this source. Comparison with the lightcurves obtained with the textit{Fermi}-LAT in HE $gamma$-rays ($100,$MeV$<E<100,$GeV) and ATOM in the optical band shows a complex relationship between these energy bands. This points to a complex structure of the emission region, since the one-zone model has difficulties to reproduce the source behavior even when taking into account absorption by ambient soft photon fields. It will be shown that the presented results have important consequences for the explanation of FSRQ spectra and lightcurves, since the emission region cannot be located deep inside the broad line region as is typically assumed. Additionally, acceleration and cooling processes must be strongly time-dependent in order to account for the observed variability patterns.
69 - Pankaj Kushwaha 2016
We present a systematic characterization of multi-wavelength emission from blazar PKS 1510-089 using well-sampled data at infrared(IR)-optical, X-ray and $gamma$-ray energies. The resulting flux distributions, except at X-rays, show two distinct lognormal profiles corresponding to a high and a low flux level. The dispersions exhibit energy dependent behavior except for the LAT $gamma$-ray and optical B-band. During the low level flux states, it is higher towards the peak of the spectral energy distribution, with $gamma$-ray being intrinsically more variable followed by IR and then optical, consistent with mainly being a result of varying bulk Lorentz factor. On the other hand, the dispersions during the high state are similar in all bands expect optical B-band, where thermal emission still dominates. The centers of distributions are a factor of $sim 4$ apart, consistent with anticipation from studies of extragalactic $gamma$-ray background with the high state showing a relatively harder mean spectral index compared to the low state.
Blazars are the most luminous and variable AGNs, and thus excellent probes of accretion and emission processes close to the central engine. We focus on PKS 1510-089 ($z=0.36$), one of the brightest gamma-ray sources in the Fermi LAT catalog, to study its complex multi-wavelength variability. PKS 1510-089 was observed twice in hard X-rays with the IBIS instrument onboard INTEGRAL during the flares of Jan 2009 and Jan 2010, and simultaneously with Swift and NOT, in addition to the constant Fermi monitoring. The optical polarization was measured in several bands on 18 Jan 2010 at the NOT. Using our and archival data we constructed historical light curves at gamma-to-radio wavelengths covering nearly 20 years and applied variability tests. We assembled SEDs in 2009 and 2010 and compared them with those at two previous epochs and with a model based on synchrotron and inverse Compton (IC) radiation. The SED modeling suggests that the physical quantities that undergo the largest variations are the total power injected into the emitting region and the random Lorentz factor of the electron distribution cooling break, that are higher in the higher gamma-ray states. This suggests a correlation of the injected power with enhanced activity of the acceleration mechanism. The cooling likely takes place at a much smaller distance ($sim$0.03 pc) than the BLR radius. The emission at a few hundred GeV can be reproduced with IC scattering of highly relativistic electrons off FIR photons at $sim$0.2 pc, presumably in a dusty torus. DCF analysis between the long-term optical and gamma-ray light curves yields a good correlation with no measurable delay. Our time analysis of the RXTE PCA and Fermi LAT light curves reveals no obvious (quasi-)periodicities, up to the maximum time scale (a few years) probed by the light curves, which are severely affected by red noise.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا