Do you want to publish a course? Click here

Graviton Propagator in a 2-Parameter Family of de Sitter Breaking Gauges

304   0   0.0 ( 0 )
 Added by Richard Woodard
 Publication date 2019
  fields Physics
and research's language is English
 Authors D. Glavan




Ask ChatGPT about the research

We formulate the graviton propagator on de Sitter background in a 2-parameter family of simple gauges which break de Sitter invariance. Explicit results are derived for the first order perturbations in each parameter. These results should be useful in computations to check for gauge dependence of graviton loop corrections.



rate research

Read More

We exploit a recent computation of one graviton loop corrections to the self-mass [1] to quantum-correct the field equation for a massless, conformally coupled scalar on a de Sitter background. With the obvious choice for the finite part of the $R^2 phi^2$ counterterm, we find that neither plane wave mode functions nor the response to a point source acquires large infrared logarithms. However, we do find a decaying logarithmic correction to the mode function and a short distance logarithmic running of the potential in addition to the power-law effect inherited from flat space.
We study the response of a classical massless minimally coupled scalar to a static point scalar charge on de Sitter. By considering explicit solutions of the problem we conclude that -- even though the dynamics formally admits dilatation (scaling) symmetry -- the physical scalar field profile necessarily breaks the symmetry. This is an instance of symmetry breaking in classical physics due to large infrared effects. The gravitational backreaction, on the other hand, does respect dilatation symmetry, making this an example of symmetry non-inheritance phenomenon.
137 - Ahmed Youssef 2012
The quantization of the massless minimally coupled (mmc) scalar field in de Sitter spacetime is known to be a non-trivial problem due to the appearance of strong infrared (IR) effects. In particular, the scale-invariance of the CMB power-spectrum - certainly one of the most successful predictions of modern cosmology - is widely believed to be inconsistent with a de Sitter invariant mmc two-point function. Using a Cesaro-summability technique to properly define an otherwise divergent Fourier transform, we show in this Letter that de Sitter symmetry breaking is emph{not} a necessary consequence of the scale-invariant fluctuation spectrum. We also generalize our result to the tachyonic scalar fields, i.e the discrete series of representations of the de Sitter group, that suffer from similar strong IR effects.
94 - D. Glavan 2020
We use a simplified formalism to re-compute the single graviton loop contribution to the self-mass of a massless, conformally coupled scalar on de Sitter background which was originally made by Boran, Kahya and Park [1-3]. Our result resolves the problem with the flat space correspondence limit that was pointed out by Frob [4]. We discuss how this computation will be used in a long-term project to purge the linearized effective field equation of gauge dependence.
We employ a recent, general gauge computation of the one loop graviton contribution to the vacuum polarization on de Sitter to solve for one loop corrections to the photon mode function. The vacuum polarization takes the form of a gauge independent, spin 2 contribution and a gauge dependent, spin 0 contribution. We show that the leading secular corrections derive entirely from the spin 2 contribution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا