No Arabic abstract
The quantization of the massless minimally coupled (mmc) scalar field in de Sitter spacetime is known to be a non-trivial problem due to the appearance of strong infrared (IR) effects. In particular, the scale-invariance of the CMB power-spectrum - certainly one of the most successful predictions of modern cosmology - is widely believed to be inconsistent with a de Sitter invariant mmc two-point function. Using a Cesaro-summability technique to properly define an otherwise divergent Fourier transform, we show in this Letter that de Sitter symmetry breaking is emph{not} a necessary consequence of the scale-invariant fluctuation spectrum. We also generalize our result to the tachyonic scalar fields, i.e the discrete series of representations of the de Sitter group, that suffer from similar strong IR effects.
We study the response of a classical massless minimally coupled scalar to a static point scalar charge on de Sitter. By considering explicit solutions of the problem we conclude that -- even though the dynamics formally admits dilatation (scaling) symmetry -- the physical scalar field profile necessarily breaks the symmetry. This is an instance of symmetry breaking in classical physics due to large infrared effects. The gravitational backreaction, on the other hand, does respect dilatation symmetry, making this an example of symmetry non-inheritance phenomenon.
We formulate the graviton propagator on de Sitter background in a 2-parameter family of simple gauges which break de Sitter invariance. Explicit results are derived for the first order perturbations in each parameter. These results should be useful in computations to check for gauge dependence of graviton loop corrections.
We discuss several aspects of quantum field theory of a scalar field in a Friedmann universe, clarifying and highlighting several conceptual and technical issues. (A) We show that one can map the dynamics of (1) a massless scalar field in a universe with power law expansion to (2) a massive scalar field in the de Sitter spacetime, which allows us to understand several features of either system and clarifies several issues related to the massless limit. (B) We obtain a useful integral representation for the Euclidean Greens function for the de Sitter spacetime, by relating it to the solution of a hypothetical electrostatic problem in five dimensions. This is helpful in the study of several relevant limits. (C) We recover that in any Friedmann universe, sourced by a negative pressure fluid, the Wightman function for a massless scalar field is divergent. This shows that the divergence of Wightman function for the massless field in the de Sitter spacetime is just a special, limiting, case of this general phenomenon. (D) We provide a generally covariant procedure for defining the power spectrum of vacuum fluctuations in terms of the different Killing vectors present in the spacetime. This allows one to study the interplay of the choice of vacuum state and the nature of the power spectrum in different coordinate systems, in the de Sitter universe, in a unified manner. (Truncated Abstract; see the paper for full Abstract.)
Previous studies of the vacuum polarization on de Sitter have demonstrated that there is a simple, noncovariant representation of it in which the physics is transparent. There is also a cumbersome, covariant representation in which the physics is obscure. Despite being unwieldy, the latter form has a powerful appeal for those who are concerned about de Sitter invariance. We show that nothing is lost by employing the simple, noncovariant representation because there is a closed form procedure for converting its structure functions to those of the covariant representation. We also present a vastly improved technique for reading off the noncovariant structure functions from the primitive diagrams. And we discuss the issue of representing the vacuum polarization for a general metric background.
We perform a minisuperspace analysis of an information-theoretic nonlinear Wheeler-deWitt (WDW) equation for de Sitter universes. The nonlinear WDW equation, which is in the form of a difference-differential equation, is transformed into a pure difference equation for the probability density by using the current conservation constraint. In the present study we observe some new features not seen in our previous approximate investigation, such as a nonzero minimum and maximum allowable size to the quantum universe: An examination of the effective classical dynamics supports the interpretation of a bouncing universe. The studied model suggests implications for the early universe, and plausibly also for the future of an ongoing accelerating phase of the universe.