No Arabic abstract
We exploit a recent computation of one graviton loop corrections to the self-mass [1] to quantum-correct the field equation for a massless, conformally coupled scalar on a de Sitter background. With the obvious choice for the finite part of the $R^2 phi^2$ counterterm, we find that neither plane wave mode functions nor the response to a point source acquires large infrared logarithms. However, we do find a decaying logarithmic correction to the mode function and a short distance logarithmic running of the potential in addition to the power-law effect inherited from flat space.
We employ a recent, general gauge computation of the one loop graviton contribution to the vacuum polarization on de Sitter to solve for one loop corrections to the photon mode function. The vacuum polarization takes the form of a gauge independent, spin 2 contribution and a gauge dependent, spin 0 contribution. We show that the leading secular corrections derive entirely from the spin 2 contribution.
We use a simplified formalism to re-compute the single graviton loop contribution to the self-mass of a massless, conformally coupled scalar on de Sitter background which was originally made by Boran, Kahya and Park [1-3]. Our result resolves the problem with the flat space correspondence limit that was pointed out by Frob [4]. We discuss how this computation will be used in a long-term project to purge the linearized effective field equation of gauge dependence.
We evaluate the one-graviton loop contribution to the vacuum polarization on de Sitter background in a 1-parameter family of exact, de Sitter invariant gauges. Our result is computed using dimensional regularization and fully renormalized with BPHZ counterterms, which must include a noninvariant owing to the time-ordered interactions. Because the graviton propagator engenders a physical breaking of de Sitter invariance two structure functions are needed to express the result. In addition to its relevance for the gauge issue this is the first time a covariant gauge graviton propagator has been used to compute a noncoincident loop. A number of identities are derived which should facilitate further graviton loop computations.
We derive a noncovariant but simple representation for the self-energy of a conformally transformed graviton field on the cosmological patch of de Sitter. Our representation involves four structure functions, as opposed to the two that would be necessary for a manifestly de Sitter invariant representation. We work out what the four structure functions are for the one loop correction due to a massless, minimally coupled scalar. And we employ the result to work out what happens to dynamical gravitons.
By making use of the background field method, the one-loop quantization for Euclidean Einstein-Weyl quadratic gravity model on the de Sitter universe is investigated. Using generalized zeta function regularization, the on-shell and off-shell one-loop effective actions are explicitly obtained and one-loop renormalizability, as well as the corresponding one-loop renormalization group equations, are discussed. The so called critical gravity is also considered.