No Arabic abstract
We analyze the de Sitter construction of cite{KKLT} using ten-dimensional supergravity, finding exact agreement with the four-dimensional effective theory. Starting from the fermionic couplings in the D7-brane action, we derive the ten-dimensional stress-energy due to gaugino condensation on D7-branes. We demonstrate that upon including this stress-energy, as well as that due to anti-D3-branes, the ten-dimensional equations of motion require the four-dimensional curvature to take precisely the value determined by the four-dimensional effective theory of cite{KKLT}.
In previous work, we found ten-dimensional solutions to the supergravity equations of motion with a dS$_4$ factor and O8-planes. We generalize this analysis and obtain other solutions in the same spirit, with an O8$_+$ and an O6$_-$. We examine our original solutions in more detail, focusing in particular on the O8$_-$ singularities and on the issues created by their boundary conditions. We also point out some previously known supersymmetric AdS solutions with the same local behavior at their O8$_-$ singularity.
We propose a new mechanism for obtaining de Sitter vacua in type IIB string theory compactified on (orientifolded) Calabi-Yau manifolds similar to those recently studied by Kachru, Kallosh, Linde and Trivedi (KKLT). dS vacuum appears in KKLT model after uplifting an AdS vacuum by adding an anti-D3-brane, which explicitly breaks supersymmetry. We accomplish the same goal by adding fluxes of gauge fields within the D7-branes, which induce a D-term potential in the effective 4D action. In this way we obtain dS space as a spontaneously broken vacuum from a purely supersymmetric 4D action. We argue that our approach can be directly extended to heterotic string vacua, with the dilaton potential obtained from a combination of gaugino condensation and the D-terms generated by anomalous U(1) gauge groups.
We present further no-go theorems for classical de Sitter vacua in Type II string theory, i.e., de Sitter constructions that do not invoke non-perturbative effects or explicit supersymmetry breaking localized sources. By analyzing the stability of the 4D potential arising from compactification on manfiolds with curvature, fluxes, and orientifold planes, we found that additional ingredients, beyond the minimal ones presented so far, are necessary to avoid the presence of unstable modes. We enumerate the minimal setups for (meta)stable de Sitter vacua to arise in this context.
We study the arguments given in [1] which suggest that the uplifting procedure in the KKLT construction is not valid. First we show that the modification of the SUSY breaking sector of the nilpotent superfield, as proposed in [1], is not consistent with non-linearly realized local supersymmetry of de Sitter supergravity. Keeping this issue aside, we also show that the corresponding bosonic potential does actually describe de Sitter uplifting.
No-scale supergravity is the appropriate general framework for low-energy effective field theories derived from string theory. The simplest no-scale Kahler potential with a single chiral field corresponds to a compactification to flat Minkowski space with a single volume modulus, but generalizations to single-field no-scale models with de Sitter vacua are also known. In this paper we generalize these de Sitter constructions to two- and multi-field models of the types occurring in string compactifications with more than one relevant modulus. We discuss the conditions for stability of the de Sitter solutions and holomorphy of the superpotential, and give examples whose superpotential contains only integer powers of the chiral fields.