Do you want to publish a course? Click here

New de Sitter Solutions in Ten Dimensions and Orientifold Singularities

161   0   0.0 ( 0 )
 Added by Clay C\\'ordova
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In previous work, we found ten-dimensional solutions to the supergravity equations of motion with a dS$_4$ factor and O8-planes. We generalize this analysis and obtain other solutions in the same spirit, with an O8$_+$ and an O6$_-$. We examine our original solutions in more detail, focusing in particular on the O8$_-$ singularities and on the issues created by their boundary conditions. We also point out some previously known supersymmetric AdS solutions with the same local behavior at their O8$_-$ singularity.



rate research

Read More

We analyze the de Sitter construction of cite{KKLT} using ten-dimensional supergravity, finding exact agreement with the four-dimensional effective theory. Starting from the fermionic couplings in the D7-brane action, we derive the ten-dimensional stress-energy due to gaugino condensation on D7-branes. We demonstrate that upon including this stress-energy, as well as that due to anti-D3-branes, the ten-dimensional equations of motion require the four-dimensional curvature to take precisely the value determined by the four-dimensional effective theory of cite{KKLT}.
We find four-dimensional de Sitter compactifications of type IIA supergravity by directly solving the ten-dimensional equations of motion. In the simplest examples, the internal space has the topology of a circle times an Einstein manifold of negative curvature. An orientifold acts on the circle with two fixed loci, at which an O8$_-$ and an O8$_+$ plane sit. These orientifold planes are fully backreacted and localized. While the solutions are numerical, the charge and tension of the orientifold planes can be verified analytically. Our solutions have moduli at tree level and can be made parametrically weakly-coupled and weakly-curved. Their fate in string theory depends on quantum corrections.
Maximally symmetric curved-brane solutions are studied in dilatonic braneworld models which realise the self-tuning of the effective four-dimensional cosmological constant. It is found that no vacua in which the brane has de Sitter or anti-de Sitter geometry exist, unless one modifies the near-boundary asymptotics of the bulk fields. In the holographic dual picture, this corresponds to coupling the UV CFT to a curved metric (possibly with a defect). Alternatively, the same may be achieved in a flat-space QFT with suitable variable scalar sources. With these ingredients, it is found that maximally symmetric, positive and negative curvature solutions with a stabilised brane position generically exist. The space of such solutions is studied in two different types of realisations of the self-tuning framework. In some regimes we observe a large hierarchy between the curvature on the brane and the boundary UV CFT curvature. This is a dynamical effect due to the self-stabilisation mechanism. This setup provides an alternative route to realising de Sitter space in string theory.
It was recently proposed that type IIA string theory may allow classical de Sitter solutions with O8-planes as the only localized sources. We show that such solutions are incompatible with the integrated supergravity equations of motion, analogously to the no-go theorem due to Maldacena and Nu~{n}ez. We also discuss in detail divergences and discontinuities at the O8-plane positions and argue that they do not invalidate such an argument. We furthermore show that a recently proposed class of non-supersymmetric AdS solutions with O8-planes is in contrast with our results as well.
126 - Nakwoo Kim 2020
We revisit the stringy construction of four-dimensional de-Sitter solutions using orientifolds O$8_{pm}$, proposed by Cordova et al. arXiv:1911.04498. While the original analysis of the supergravity equations is largely numerical, we obtain semi-analytic solutions by treating the curvature as a perturbative parameter. At each order we verify that the (permissive) boundary conditions at the orientifolds are satisfied. To illustrate the advantage of our result, we calculate the four-dimensional Newton constant as a function of the cosmological constant. We also discuss how the discontinuities at O$8_-$ can be accounted for in terms of corrections to the worldvolume action.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا