Do you want to publish a course? Click here

De Sitter Vacua in No-Scale Supergravity

63   0   0.0 ( 0 )
 Added by John Ellis
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

No-scale supergravity is the appropriate general framework for low-energy effective field theories derived from string theory. The simplest no-scale Kahler potential with a single chiral field corresponds to a compactification to flat Minkowski space with a single volume modulus, but generalizations to single-field no-scale models with de Sitter vacua are also known. In this paper we generalize these de Sitter constructions to two- and multi-field models of the types occurring in string compactifications with more than one relevant modulus. We discuss the conditions for stability of the de Sitter solutions and holomorphy of the superpotential, and give examples whose superpotential contains only integer powers of the chiral fields.



rate research

Read More

We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N=1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which the scalar partners of the Goldstino are non-tachyonic, which depends only on the Kahler potential. This condition is not only necessary but also sufficient, in the sense that all of the other scalar fields can be given arbitrarily large positive square masses if the superpotential is suitably tuned. We consider both heterotic and orientifold string compactifications in the large-volume limit and show that the no-scale property shared by these models severely restricts the allowed values for the `sGoldstino masses in the superpotential parameter space. We find that a positive mass term may be achieved only for certain types of compactifications and specific Goldstino directions. Additionally, we show how subleading corrections to the Kahler potential which break the no-scale property may allow to lift these masses.
We develop a method for constructing metastable de Sitter vacua in N=1 supergravity models describing the no-scale volume moduli sector of Calabi-Yau string compactifications. We consider both heterotic and orientifold models. Our main guideline is the necessary condition for the existence of metastable vacua coming from the Goldstino multiplet, which constrains the allowed scalar geometries and supersymmetry-breaking directions. In the simplest non-trivial case where the volume is controlled by two moduli, this condition simplifies and turns out to be fully characterised by the intersection numbers of the Calabi-Yau manifold. We analyse this case in detail and show that once the metastability condition is satisfied it is possible to reconstruct in a systematic way the local form of the superpotential that is needed to stabilise all the fields. We apply then this procedure to construct some examples of models where the superpotential takes a realistic form allowed by flux backgrounds and gaugino condensation effects, for which a viable vacuum arises without the need of invoking corrections to the Kahler potential breaking the no-scale property or uplifting terms. We finally discuss the prospects of constructing potentially realistic models along these lines.
We study string loop corrections to the gravity kinetic terms in type IIB compactifications on Calabi-Yau threefolds or their orbifold limits, in the presence of $D7$-branes and orientifold planes. We show that they exhibit in general a logarithmic behaviour in the large volume limit transverse to the $D7$-branes, induced by a localised four-dimensional Einstein-Hilbert action that appears at a lower order in the closed string sector, found in the past. Here, we compute the coefficient of the logarithmic corrections and use them to provide an explicit realisation of a mechanism for Kahler moduli stabilisation that we have proposed recently, which does not rely on non-perturbative effects and lead to de Sitter vacua. Our result avoids no-go theorems of perturbative stabilisation due to runaway potentials, in a way similar to the Coleman-Weinberg mechanism, and provides a counter example to one of the swampland conjectures concerning de Sitter vacua in quantum gravity, once string loop effects are taken into account; it thus paves the way for embedding the Standard Model of particle physics and cosmology in string theory.
We consider the entanglement entropy of a free massive scalar field in the one parameter family of $alpha$-vacua in de Sitter space by using a method developed by Maldacena and Pimentel. An $alpha$-vacuum can be thought of as a state filled with particles from the point of view of the Bunch-Davies vacuum. Of all the $alpha$-vacua we find that the entanglement entropy takes the minimal value in the Bunch-Davies solution. We also calculate the asymptotic value of the Renyi entropy and find that it increases as $alpha$ increases. We argue these feature stem from pair condensation within the non-trivial $alpha$-vacua where the pairs have an intrinsic quantum correlation.
We construct purely non-perturbative anti-de Sitter vacua in string theory which, on uplifting to a de Sitter (dS) one, have a decay time many orders of magnitude smaller than those of standard constructions, such as the KKLT and LVS scenarios. By virtue of being constructed purely from non-perturbative terms, these vacua avoids certain obstructions plaguing other constructions of dS in string theory. This results in a new class of phenomenological dS vacua in string theory with novel distinctive characteristics such as having two maxima. After examining whether these uplifted dS vacua obey the TCC, we revisit some old problems of realization of dS space as a vacuum. We find that not only is it phenomenologically hard to construct TCC-compatible vacua, but also inherent temporal dependences of the degrees of freedom generically arise in such constructions, amongst other issues. This reinforces the idea that dS, if it exists in string theory, should be a Glauber-Sudarshan state and not a vacuum.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا