Do you want to publish a course? Click here

Clouds of Fluffy Aggregates: How They Form in Exoplanetary Atmospheres and Influence Transmission Spectra

155   0   0.0 ( 0 )
 Added by Kazumasa Ohno
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transmission spectrum surveys have suggested the ubiquity of high-altitude clouds in exoplanetary atmospheres. Theoretical studies have investigated the formation processes of the high-altitude clouds; however, cloud particles have been commonly approximated as compact spheres, which is not always true for solid mineral particles that likely constitute exoplanetary clouds. Here, we investigate how the porosity of cloud particles evolve in exoplanetary atmospheres and influence the cloud vertical profiles. We first construct a porosity evolution model that takes into account the fractal aggregation and the compression of cloud particle aggregates. Using a cloud microphysical model coupled with the porosity model, we demonstrate that the particle internal density can significantly decrease during the cloud formation. As a result, fluffy-aggregate clouds ascend to altitude much higher than that for compact-sphere clouds assumed so far. We also examine how the fluffy-aggregate clouds affect transmission spectra. We find that the clouds largely obscure the molecular features and produce a spectral slope originated by the scattering properties of aggregates. Finally, we compare the synthetic spectra with the observations of GJ1214 b and find that its flat spectrum could be explained if the atmospheric metallicity is sufficiently high ($ge100times$ solar) and the monomer size is sufficiently small ($r_{rm mon}<1~{rm {mu}m}$). The high-metallicity atmosphere may offer the clues to explore the gas accretion processes onto past GJ1214b.



rate research

Read More

Today, we know ~4330 exoplanets orbiting their host stars in ~3200 planetary systems. The diversity of these exoplanets is large, and none of the known exoplanets is a twin to any of the solar system planets, nor is any of the known extrasolar planetary systems a twin of the solar system. Such diversity on many scales and structural levels requires fundamental theoretical approaches. Large efforts are underway to develop individual aspects of exoplanet sciences, like exoplanet atmospheres, cloud formation, disk chemistry, planet system dynamics, mantle convection, mass loss of planetary atmospheres. The following challenges need to be addressed in tandem with observational efforts. They provide the opportunity to progress our understanding of exoplanets and their atmospheres by exploring our models as virtual laboratories to fill gaps in observational data from different instruments and missions, and taken at different instances of times: Challenge a) Building complex models based on theoretical rigour that aim to understand the interactions of atmospheric processes, to treat cloud formation and its feedback onto the gas-phase chemistry and the energy budget of the planetary atmosphere moving away from solar-system inspired parameterisations. Challenge b) Enabling cloud modelling based on fundamental physio-chemical insights in order to be applicable to the large and unexplored chemical, radiative and thermodynamical parameter range of exoplanets in the universe. Challenge b) will be explored in this chapter of the book ExoFrontiers.
Transmission spectra of exoplanetary atmospheres have been used to infer the presence of clouds/hazes. Such inferences are typically based on spectral slopes in the optical deviant from gaseous Rayleigh scattering or low-amplitude spectral features in the infrared. We investigate three observable metrics that could allow constraints on cloud properties from transmission spectra, namely, the optical slope, the uniformity of this slope, and condensate features in the infrared. We derive these metrics using model transmission spectra considering Mie extinction from a wide range of condensate species, particle sizes, and scale heights. Firstly, we investigate possible degeneracies among the cloud properties for an observed slope. We find, for example, that spectra with very steep optical slopes suggest sulphide clouds (e.g. MnS, ZnS, Na$_2$S) in the atmospheres. Secondly, (non)uniformities in optical slopes provide additional constraints on cloud properties, e.g., MnS, ZnS, TiO$_2$, and Fe$_2$O$_3$ have significantly non-uniform slopes. Thirdly, infrared spectra provide an additional powerful probe into cloud properties, with SiO$_2$, Fe$_2$O$_3$, Mg$_2$SiO$_4$, and MgSiO$_3$ bearing strong infrared features observable with the James Webb Space Telescope. We investigate observed spectra of eight hot Jupiters and discuss their implications. In particular, no single or composite condensate species considered here conforms to the steep and non-uniform optical slope observed for HD 189733b. Our work highlights the importance of the three above metrics to investigate cloud properties in exoplanetary atmospheres using high-precision transmission spectra and detailed cloud models. We make our Mie scattering data for condensates publicly available to the community.
Atmospheric retrievals of exoplanetary transmission spectra provide important constraints on various properties such as chemical abundances, cloud/haze properties, and characteristic temperatures, at the day-night atmospheric terminator. To date, most spectra have been observed for giant exoplanets due to which retrievals typically assume H-rich atmospheres. However, recent observations of mini-Neptunes/super-Earths, and the promise of upcoming facilities including JWST, call for a new generation of retrievals that can address a wide range of atmospheric compositions and related complexities. Here we report Aurora, a next-generation atmospheric retrieval framework that builds upon state-of-the-art architectures and incorporates the following key advancements: a) a generalised compositional retrieval allowing for H-rich and H-poor atmospheres, b) a generalised prescription for inhomogeneous clouds/hazes, c) multiple Bayesian inference algorithms for high-dimensional retrievals, d) modular considerations for refraction, forward scattering, and Mie-scattering, and e) noise modeling functionalities. We demonstrate Aurora on current and/or synthetic observations of hot Jupiter HD209458b, mini-Neptune K218b, and rocky exoplanet TRAPPIST1d. Using current HD209458b spectra, we demonstrate the robustness of our framework and cloud/haze prescription against assumptions of H-rich/H-poor atmospheres, improving on previous treatments. Using real and synthetic spectra of K218b, we demonstrate the agnostic approach to confidently constrain its bulk atmospheric composition and obtain precise abundance estimates. For TRAPPIST1d, 10 JWST NIRSpec transits can enable identification of the main atmospheric component for cloud-free CO$_2$-rich and N$_2$-rich atmospheres, and abundance constraints on trace gases including initial indications of O$_3$ if present at enhanced levels ($sim$10-100x Earth levels).
We compute models of the transmission spectra of planets HD 209458b, HD 189733b, and generic hot Jupiters. We examine the effects of temperature, surface gravity, and metallicity for the generic planets as a guide to understanding transmission spectra in general. We find that carbon dioxide absorption at 4.4 and 15 microns is prominent at high metallicity, and is a clear metallicity indicator. For HD 209458b and HD 189733b, we compute spectra for both one-dimensional and three-dimensional model atmospheres and examine the differences between them. The differences are usually small, but can be large if atmospheric temperatures are near important chemical abundance boundaries. The calculations for the 3D atmospheres, and their comparison with data, serve as constraints on these dynamical models that complement the secondary eclipse and light curve data sets. For HD 209458b, even if TiO and VO gases are abundant on the day side, their abundances can be considerably reduced on the cooler planetary limb. However, given the predicted limb temperatures and TiO abundances, the models optical opacity is too high. For HD 189733b we find a good match with some infrared data sets and constrain the altitude of a postulated haze layer. For this planet, substantial differences can exist between the transmission spectra of the leading and trailing hemispheres, which is an excellent probe of carbon chemistry. In thermochemical equilibrium, the cooler leading hemisphere is methane-dominated, and the hotter trailing hemisphere is CO-dominated, but these differences may be eliminated by non-equilibrium chemistry due to vertical mixing. It may be possible to constrain the carbon chemistry of this planet, and its spatial variation, with JWST.
248 - Mario Damiano , Renyu Hu , 2020
Direct imaging of widely separated exoplanets from space will obtain their reflected light spectra and measure atmospheric properties. Previous calculations have shown that a change in the orbital phase would cause a spectral signal, but whether this signal may be used to characterize the atmosphere has not been shown. We simulate starshade-enabled observations of the planet 47 Uma b, using the to-date most realistic simulator SISTER to estimate the uncertainties due to residual starlight, solar glint, and exozodiacal light. We then use the Bayesian retrieval algorithm ExoReL$^Re$ to determine the constraints on the atmospheric properties from observations using a Roman- or HabEx-like telescope, comparing the strategies to observe at multiple orbital phases or in multiple wavelength bands. With a $sim20%$ bandwidth in 600 - 800 nm on a Roman-like telescope, the retrieval finds a degenerate scenario with a lower gas abundance and a deeper or absent cloud than the truth. Repeating the observation at a different orbital phase or at a second $20%$ wavelength band in 800 - 1000 nm, with the same integration time and thus degraded S/N, would effectively eliminate this degenerate solution. Single observation with a HabEx-like telescope would yield high-precision constraints on the gas abundances and cloud properties, without the degenerate scenario. These results are also generally applicable to high-contrast spectroscopy with a coronagraph with a similar wavelength coverage and S/N, and can help design the wavelength bandwidth and the observation plan of exoplanet direct imaging experiments in the future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا