Do you want to publish a course? Click here

Magnetic Domain Wall Motion due to AC Bias-Driven Resonances

87   0   0.0 ( 0 )
 Added by Se Kwon Kim
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Most of the existing researches on the dynamics of a domain wall (DW) have focused on the effect of DC biases, where the induced velocity is determined by the bias strength. Here we show that AC biases such as a field or a current are also able to move a DW via synchronization between the DW angle and the phase of the AC bias. The resulting DW velocity is proportional to the driving frequency of the AC bias, but independent of the bias strength, offering potentially low-power operations of DW devices. The AC-bias-driven DW motion is shown to exhibit a phase locking-unlocking transition, a critical phenomenon akin to the Walker breakdown of a DC-bias-driven DW motion. Our work shows that a DW can be driven resonantly by synchronizing its angle to AC biases, shedding a light on hitherto overlooked utility of internal degree of freedom for driving magnetic textures.



rate research

Read More

Chiral magnetic materials provide a number of challenging issues such as the highly efficient domain wall (DW) and skyrmion motions driven by electric current, as of the operation principles of emerging spintronic devices. The DWs in the chiral materials exhibit asymmetric DW speed variation under application of in plane magnetic field. Here, we show that such DW speed asymmetry causes the DW tilting during the motion along wire structure. It has been known that the DW tilting can be induced by the direct Zeeman interaction of the DW magnetization under application of in plane magnetic field. However, our experimental observations manifests that there exists another dominant process with the DW speed asymmetry caused by either the Dzyaloshinskii Moriya interaction (DMI) or the chirality dependent DW speed variation. A theoretical model based on the DW geometry reveals that the DW tilting is initiated by the DW pinning at wire edges and then, the direction of the DW tilting is determined by the DW speed asymmetry, as confirmed by a numerical simulation. The present observation reveals the decisive role of the DW pinning with the DW speed asymmetry, which determines the DW geometry and consequently, the dynamics.
Control of magnetic domain wall motion by electric fields has recently attracted scientific attention because of its potential for magnetic logic and memory devices. Here, we report on a new driving mechanism that allows for magnetic domain wall motion in an applied electric field without the concurrent use of a magnetic field or spin-polarized electric current. The mechanism is based on elastic coupling between magnetic and ferroelectric domain walls in multiferroic heterostructures. Pure electric-field driven magnetic domain wall motion is demonstrated for epitaxial Fe films on BaTiO$_3$ with in-plane and out-of-plane polarized domains. In this system, magnetic domain wall motion is fully reversible and the velocity of the walls varies exponentially as a function of out-of-plane electric field strength.
We theoretically study domain wall motion induced by an electric field in the quantum anomalous Hall states on a two-dimensional Kagome lattice with ferromagnetic order and spin-orbit coupling. We show that an electric charge is accumulated near the domain wall which indicates that the electric field drives both the accumulated charge and the domain wall with small energy dissipation. Using the linear response theory we compute the non-equilibrium spin density which exerts a non-adiabatic spin transfer torque on textures of the local magnetization. This torque emerges even when the bulk is insulating and does not require the longitudinal electric current. Finally, we estimate the velocity of domain wall motion in this system, which is faster than that in conventional metals.
116 - Jin Lan , Jiang Xiao 2021
In easy-plane ferromagnets, all magnetic dynamics are restricted in a specific plane, and the domain wall becomes massive instead of gyroscopic. Here we show that the interaction between domain wall and spin wave packet in easy-plane ferromagnets takes analogy to two massive particles colliding via attraction. Due to mutual attraction, the penetration of spin wave packet leads to backward displacement of the domain wall, and further the penetration of continuous spin wave leads to constant velocity of domain wall. The underlying temporary exchange of momentum, instead of permanent transfer of linear and angular momenta, provides a new paradigm in magnonically driving domain wall.
We demonstrate optical manipulation of the position of a domain wall in a dilute magnetic semiconductor, GaMnAsP. Two main contributions are identified. Firstly, photocarrier spin exerts a spin transfer torque on the magnetization via the exchange interaction. The direction of the domain wall motion can be controlled using the helicity of the laser. Secondly, the domain wall is attracted to the hot-spot generated by the focused laser. Unlike magnetic field driven domain wall depinning, these mechanisms directly drive domain wall motion, providing an optical tweezer like ability to position and locally probe domain walls.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا