Do you want to publish a course? Click here

Optical spin transfer torque driven domain wall motion in ferromagnetic semiconductor

162   0   0.0 ( 0 )
 Added by Andrew Ramsay
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate optical manipulation of the position of a domain wall in a dilute magnetic semiconductor, GaMnAsP. Two main contributions are identified. Firstly, photocarrier spin exerts a spin transfer torque on the magnetization via the exchange interaction. The direction of the domain wall motion can be controlled using the helicity of the laser. Secondly, the domain wall is attracted to the hot-spot generated by the focused laser. Unlike magnetic field driven domain wall depinning, these mechanisms directly drive domain wall motion, providing an optical tweezer like ability to position and locally probe domain walls.



rate research

Read More

116 - Jin Lan , Jiang Xiao 2021
In easy-plane ferromagnets, all magnetic dynamics are restricted in a specific plane, and the domain wall becomes massive instead of gyroscopic. Here we show that the interaction between domain wall and spin wave packet in easy-plane ferromagnets takes analogy to two massive particles colliding via attraction. Due to mutual attraction, the penetration of spin wave packet leads to backward displacement of the domain wall, and further the penetration of continuous spin wave leads to constant velocity of domain wall. The underlying temporary exchange of momentum, instead of permanent transfer of linear and angular momenta, provides a new paradigm in magnonically driving domain wall.
We have studied current-driven domain wall motion in modified Ga_0.95Mn_0.05As Hall bar structures with perpendicular anisotropy by using spatially resolved Polar Magneto-Optical Kerr Effect Microscopy and micromagnetic simulation. Regardless of the initial magnetic configuration, the domain wall propagates in the opposite direction to the current with critical current of 1~2x10^5A/cm^2. Considering the spin transfer torque term as well as various effective magnetic field terms, the micromagnetic simulation results are consistent with the experimental results. Our simulated and experimental results suggest that the spin-torque rather than Oersted field is the reason for current driven domain wall motion in this material.
The spin-transfer-torque-driven (STT-driven) dynamics of a domain wall in an easy-axis rare-earth transition-metal ferrimagnet is investigated theoretically and numerically in the vicinity of the angular momentum compensation point $T_A$, where the net spin density vanishes. The particular focus is given on the unusual interaction of the antiferromagnetic dynamics of a ferrimagnetic domain wall and the adiabatic component of STT, which is absent in antiferromagnets but exists in the ferrimagnets due to the dominant coupling of conduction electrons to transition-metal spins. Specifically, we first show that the STT-induced domain-wall velocity changes its sign across $T_A$ due to the sign change of the net spin density, giving rise to a phenomenon unique to ferrimagnets that can be used to characterize $T_A$ electrically. It is also shown that the frequency of the STT-induced domain-wall precession exhibits its maximum at $T_A$ and it can approach the spin-wave gap at sufficiently high currents. Lastly, we report a numerical observation that, as the current density increases, the domain-wall velocity starts to deviate from the linear-response result, calling for a more comprehensive theory for the domain-wall dynamics in ferrimagnets driven by a strong current.
Several experimental techniques have been introduced in recent years in attempts to measure spin transfer torque in magnetic tunnel junctions (MTJs). The dependence of spin torque on bias is important for understanding fundamental spin physics in magnetic devices and for applications. However, previous techniques have provided only indirect measures of the torque and their results to date for the bias dependence are qualitatively and quantitatively inconsistent. Here we demonstrate that spin torque in MTJs can be measured directly by using time-domain techniques to detect resonant magnetic precession in response to an oscillating spin torque. The technique is accurate in the high-bias regime relevant for applications, and because it detects directly small-angle linear-response magnetic dynamics caused by spin torque it is relatively immune to artifacts affecting competing techniques. At high bias we find that the spin torque vector differs markedly from the simple lowest-order Taylor series approximations commonly assumed.
We theoretically study domain wall motion induced by an electric field in the quantum anomalous Hall states on a two-dimensional Kagome lattice with ferromagnetic order and spin-orbit coupling. We show that an electric charge is accumulated near the domain wall which indicates that the electric field drives both the accumulated charge and the domain wall with small energy dissipation. Using the linear response theory we compute the non-equilibrium spin density which exerts a non-adiabatic spin transfer torque on textures of the local magnetization. This torque emerges even when the bulk is insulating and does not require the longitudinal electric current. Finally, we estimate the velocity of domain wall motion in this system, which is faster than that in conventional metals.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا