Do you want to publish a course? Click here

Reversible Electric-Field Driven Magnetic Domain Wall Motion

121   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Control of magnetic domain wall motion by electric fields has recently attracted scientific attention because of its potential for magnetic logic and memory devices. Here, we report on a new driving mechanism that allows for magnetic domain wall motion in an applied electric field without the concurrent use of a magnetic field or spin-polarized electric current. The mechanism is based on elastic coupling between magnetic and ferroelectric domain walls in multiferroic heterostructures. Pure electric-field driven magnetic domain wall motion is demonstrated for epitaxial Fe films on BaTiO$_3$ with in-plane and out-of-plane polarized domains. In this system, magnetic domain wall motion is fully reversible and the velocity of the walls varies exponentially as a function of out-of-plane electric field strength.



rate research

Read More

The dynamic observation of domain wall motion induced by electric field in magnetoelectric iron garnet film is reported. Measurements in 800 kV/cm electric field pulses gave the domain wall velocity ~45 m/s. Similar velocity was achieved in magnetic field pulse about 50 Oe. Reversible and irreversible micromagnetic structure transformation is demonstrated. These effects are promising for applications in spintronics and magnetic memory.
We investigate magnetic domain wall (MDW) dynamics induced by applied electric fields in ferromagnetic-ferroelectric thin-film heterostructures. In contrast to conventional driving mechanisms where MDW motion is induced directly by magnetic fields or electric currents, MDW motion arises here as a result of strong pinning of MDWs onto ferroelectric domain walls (FDWs) via local strain coupling. By performing extensive micromagnetic simulations, we find several dynamical regimes, including instabilities such as spin wave emission and complex transformations of the MDW structure. In all cases, the time-averaged MDW velocity equals that of the FDW, indicating the absence of Walker breakdown.
115 - H. Kakizakai , F. Ando , T. Koyama 2016
Electric field effect on magnetism is an appealing technique for manipulating the magnetization at a low cost of energy. Here, we show that the local magnetization of the ultra-thin Co film can be switched by just applying a gate electric field without an assist of any external magnetic field or current flow. The local magnetization switching is explained by the nucleation and annihilation of the magnetic domain through the domain wall motion induced by the electric field. Our results lead to external field free and ultra-low energy spintronic applications.
We report on reversible electric-field-driven magnetic domain wall motion in a Cu/Ni multilayer on a ferroelectric BaTiO$_3$ substrate. In our heterostructure, strain-coupling to ferroelastic domains with in-plane and perpendicular polarization in the BaTiO$_3$ substrate causes the formation of domains with perpendicular and in-plane magnetic anisotropy, respectively, in the Cu/Ni multilayer. Walls that separate magnetic domains are elastically pinned onto ferroelectric domain walls. Using magneto-optical Kerr effect microscopy, we demonstrate that out-of-plane electric field pulses across the BaTiO$_3$ substrate move the magnetic and ferroelectric domain walls in unison. Our experiments indicate an exponential increase of domain wall velocity with electric field strength and opposite domain wall motion for positive and negative field pulses. Magnetic fields do not affect the velocity of magnetic domain walls, but independently tailor their internal spin structure, causing a change in domain wall dynamics at high velocities.
152 - X. R. Wang , P. Yan 2008
The propagation of a head-to-head magnetic domain-wall (DW) or a tail-to-tail DW in a magnetic nanowire under a static field along the wire axis is studied. Relationship between the DW velocity and DW structure is obtained from the energy consideration. The role of the energy dissipation in the field-driven DW motion is clarified. Namely, a field can only drive a domain-wall propagating along the field direction through the mediation of a damping. Without the damping, DW cannot propagate along the wire. Contrary to the common wisdom, DW velocity is, in general, proportional to the energy dissipation rate, and one needs to find a way to enhance the energy dissipation in order to increase the propagation speed. The theory provides also a nature explanation of the wire-width dependence of the DW velocity and velocity oscillation beyond Walker breakdown field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا