Do you want to publish a course? Click here

Sobolev versus Holder minimizers for the degenerate fractional $p$-Laplacian

139   0   0.0 ( 0 )
 Added by Marco Squassina
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We consider a nonlinear pseudo-differential equation driven by the fractional $p$-Laplacian $(-Delta)^s_p$ with $sin(0,1)$ and $pge 2$ (degenerate case), under Dirichlet type conditions in a smooth domain $Omega$. We prove that local minimizers of the associated energy functional in the fractional Sobolev space $W^{s,p}_0(Omega)$ and in the weighted Holder space $C^0_s(overlineOmega)$, respectively, do coincide.



rate research

Read More

We consider a pseudo-differential equation driven by the fractional $p$-Laplacian with $pge 2$ (degenerate case), with a bounded reaction $f$ and Dirichlet type conditions in a smooth domain $Omega$. By means of barriers, a nonlocal superposition principle, and the comparison principle, we prove that any weak solution $u$ of such equation exhibits a weighted Holder regularity up to the boundary, that is, $u/d^sin C^alpha(overlineOmega)$ for some $alphain(0,1)$, $d$ being the distance from the boundary.
We consider a version of the fractional Sobolev inequality in domains and study whether the best constant in this inequality is attained. For the half-space and a large class of bounded domains we show that a minimizer exists, which is in contrast to the classical Sobolev inequalities in domains.
We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, with a logistic type reaction depending on a positive parameter. In the subdiffusive and equidiffusive cases, we prove existence and uniqueness of the positive solution when the parameter lies in convenient intervals. In the superdiffusive case, we establish a bifurcation result. A new strong comparison result, of independent interest, plays a crucial role in the proof of such bifurcation result.
105 - Marta Lewicka 2020
This paper concerns the fractional $p$-Laplace operator $Delta_p^s$ in non-divergence form, which has been introduced in [Bjorland, Caffarelli, Figalli (2012)]. For any $pin [2,infty)$ and $sin (frac{1}{2},1)$ we first define two families of non-local, non-linear averaging operators, parametrised by $epsilon$ and defined for all bounded, Borel functions $u:mathbb{R}^Nto mathbb{R}$. We prove that $Delta_p^s u(x)$ emerges as the $epsilon^{2s}$-order coefficient in the expansion of the deviation of each $epsilon$-average from the value $u(x)$, in the limit of the domain of averaging exhausting an appropriate cone in $mathbb{R}^N$ at the rate $epsilonto 0$. Second, we consider the $epsilon$-dynamic programming principles modeled on the first average, and show that their solutions converge uniformly as $epsilonto 0$, to viscosity solutions of the homogeneous non-local Dirichlet problem for $Delta_p^s$, when posed in a domain $mathcal{D}$ that satisfies the external cone condition and subject to bounded, uniformly continuous data on $mathbb{R}^Nsetminus mathcal{D}$. Finally, we interpret such $epsilon$-approximating solutions as values to the non-local Tug-of-War game with noise. In this game, players choose directions while the game position is updated randomly within the infinite cone that aligns with the specified direction, whose aperture angle depends on $p$ and $N$, and whose $epsilon$-tip has been removed.
Mean value formulas are of great importance in the theory of partial differential equations: many very useful results are drawn, for instance, from the well known equivalence between harmonic functions and mean value properties. In the nonlocal setting of fractional harmonic functions, such an equivalence still holds, and many applications are now-days available. The nonlinear case, corresponding to the $p$-Laplace operator, has also been recently investigated, whereas the validity of a nonlocal, nonlinear, counterpart remains an open problem. In this paper, we propose a formula for the emph{nonlocal, nonlinear mean value kernel}, by means of which we obtain an asymptotic representation formula for harmonic functions in the viscosity sense, with respect to the fractional (variational) $p$-Laplacian (for $pgeq 2$) and to other gradient dependent nonlocal operators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا