Do you want to publish a course? Click here

An asymptotic expansion for the fractional $p$-Laplacian and for gradient dependent nonlocal operators

66   0   0.0 ( 0 )
 Added by Claudia Bucur D
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Mean value formulas are of great importance in the theory of partial differential equations: many very useful results are drawn, for instance, from the well known equivalence between harmonic functions and mean value properties. In the nonlocal setting of fractional harmonic functions, such an equivalence still holds, and many applications are now-days available. The nonlinear case, corresponding to the $p$-Laplace operator, has also been recently investigated, whereas the validity of a nonlocal, nonlinear, counterpart remains an open problem. In this paper, we propose a formula for the emph{nonlocal, nonlinear mean value kernel}, by means of which we obtain an asymptotic representation formula for harmonic functions in the viscosity sense, with respect to the fractional (variational) $p$-Laplacian (for $pgeq 2$) and to other gradient dependent nonlocal operators.



rate research

Read More

We propose two asymptotic expansions of the two interrelated integral-type averages, in the context of the fractional $infty$-Laplacian $Delta_infty^s$ for $sin (frac{1}{2},1)$. This operator has been introduced and first studied in [Bjorland-Caffarelli-Figalli, 2012]. Our expansions are parametrised by the radius of the removed singularity $epsilon$, and allow for the identification of $Delta_infty^sphi(x)$ as the $epsilon^{2s}$-order coefficient of the deviation of the $epsilon$-average from the value $phi(x)$, in the limit $epsilonto 0+$. The averages are well posed for functions $phi$ that are only Borel regular and bounded.
We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, with a logistic type reaction depending on a positive parameter. In the subdiffusive and equidiffusive cases, we prove existence and uniqueness of the positive solution when the parameter lies in convenient intervals. In the superdiffusive case, we establish a bifurcation result. A new strong comparison result, of independent interest, plays a crucial role in the proof of such bifurcation result.
We consider a pseudo-differential equation driven by the fractional $p$-Laplacian with $pge 2$ (degenerate case), with a bounded reaction $f$ and Dirichlet type conditions in a smooth domain $Omega$. By means of barriers, a nonlocal superposition principle, and the comparison principle, we prove that any weak solution $u$ of such equation exhibits a weighted Holder regularity up to the boundary, that is, $u/d^sin C^alpha(overlineOmega)$ for some $alphain(0,1)$, $d$ being the distance from the boundary.
We obtain an asymptotic representation formula for harmonic functions with respect to a linear anisotropic nonlocal operator. Furthermore we get a Bourgain-Brezis-Mironescu type limit formula for a related class of anisotropic nonlocal norms.
We consider a nonlinear pseudo-differential equation driven by the fractional $p$-Laplacian $(-Delta)^s_p$ with $sin(0,1)$ and $pge 2$ (degenerate case), under Dirichlet type conditions in a smooth domain $Omega$. We prove that local minimizers of the associated energy functional in the fractional Sobolev space $W^{s,p}_0(Omega)$ and in the weighted Holder space $C^0_s(overlineOmega)$, respectively, do coincide.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا