Do you want to publish a course? Click here

Monolithically Integrated Perovskite Semiconductor Lasers on Silicon Photonic Chips by Scalable Top-Down Fabrication

309   0   0.0 ( 0 )
 Added by Max C. Lemme
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Metal-halide perovskites are promising lasing materials for realization of monolithically integrated laser sources, the key components of silicon photonic integrated circuits (PICs). Perovskites can be deposited from solution and require only low temperature processing leading to significant cost reduction and enabling new PIC architectures compared to state-of-the-art lasers realized through costly and inefficient hybrid integration of III-V semiconductors. Until now however, due to the chemical sensitivity of perovskites, no microfabrication process based on optical lithography and therefore on existing semiconductor manufacturing infrastructure has been established. Here, the first methylammonium lead iodide perovskite micro-disc lasers monolithically integrated into silicon nitride PICs by such a top-down process is presented. The lasers show a record low lasing threshold of 4.7 ${mu}$Jcm$^{-2}$ at room temperature for monolithically integrated lasers, which are CMOS compatible and can be integrated in the back-end-of-line (BEOL) processes.



rate research

Read More

Among the several flexible thermoelectric modules in existence, sintered Bi-Te-based modules represent a viable option because of their high output power density and flexibility, which enables the use of arbitrary heat sources. We have fabricated Bi-Te-based modules with a large-scalable fabrication process and improved their output performance. The reduction in the interconnection resistance, using thick electrodes of the flexible printed circuit, significantly improves the modules output power to 87 mW/cm$^{2}$ at $Delta T$ = 70 K, which is 1.3-fold higher than a previous prototype module. Furthermore, the establishment of the fabrication for the top electrodes by using the surface mount technology makes it possible to realize a high-throughput manufacturing of the module. Our durability tests reveal that there is no significant change in the internal resistance of the module during 10000 cycles of mechanical bending test and 1000 cycles of thermal stress test.
The main interest of group-III-nitride nanophotonic circuits is the integration of active structures and laser sources. A photonic platform of group-III-nitride microdisk lasers integrated on silicon and emitting in the blue spectral range is demonstrated. The active microdisks are side-coupled to suspended bus waveguides, and the coupled emission is guided and outcoupled to free space using grating couplers. A small gap size of less than 100 nm between the disk and the waveguide is required in the blue spectral range for optimal evanescent coupling. To avoid reabsorption of the microdisk emission in the waveguide, the quantum wells are etched away from the waveguide. Under continuous-wave excitation, loaded quality factors greater than 2000 are observed for the whispering gallery modes for devices with small gaps and large waveguide bending angles. Under pulsed excitation conditions, lasing is evidenced for 3 $mu$m diameter microdisks integrated in a full photonic circuit. We thus present a first demonstration of a III-nitride microlaser coupled to a nanophotonic circuit.
Nanodiamonds hosting colour centres are a promising material platform for various quantum technologies. The fabrication of non-aggregated and uniformly-sized nanodiamonds with systematic integration of single quantum emitters has so far been lacking. Here, we present a top-down fabrication method to produce 30.0$pm$5.4 nm uniformly-sized single-crystal nanodiamonds by block copolymer self-assembled nanomask patterning together with directional and isotropic reactive ion etching. We show detected emission from bright single nitrogen vacancy centres hosted in the fabricated nanodiamonds. The lithographically precise patterning of large areas of diamond by self-assembled masks and their release into uniformly sized nanodiamonds open up new possibilities for quantum information processing and sensing.
To develop a new generation of high-speed photonic modulators on silicon-technology-based photonics, new materials with large Pockels coefficients have been transferred to silicon substrates. Previous approaches focus on realizing stand-alone devices on dedicated silicon substrates, incompatible with the fabrication process in silicon foundries. In this work, we demonstrate monolithic integration of electro-optic modulators based on the Pockels effect in barium titanate (BTO) thin films into the back-end-of-line of a photonic integrated circuit (PIC) platform. Molecular wafer bonding allows fully PIC-compatible integration of BTO-based devices and is, as shown, scalable to 200 mm wafers. The PIC-integrated BTO Mach-Zehnder modulators outperform conventional Si photonic modulators in modulation efficiency, losses, and static tuning power. The devices show excellent V{pi}L (0.2 Vcm) and V{pi}L{alpha} (1.3 VdB), work at high speed (25 Gbps), and can be tuned at low static power consumption (100 nW). Our concept demonstrates the possibility of monolithic integration of Pockels-based electro-optic modulators in advanced silicon photonic platforms. {c} 2019 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved. https://www.osapublishing.org/jlt/abstract.cfm?URI=jlt-37-5-1456 Publication date: March 1, 2019 This work was supported in part by the European Union (EU) under Horizon 2020 grant agreements no. H2020-ICT-2015-25-688579 (PHRESCO) and H2020-ICT-2017-1-780997 (plaCMOS).
Growing interest in devices based on layered van der Waals (vdW) materials is motivating the development of new nanofabrication methods. Hexagonal boron nitride (hBN) is one of the most promising materials for studies of quantum photonics and polaritonics. Here, we report in detail on a promising nanofabrication processes used to fabricate several hBN photonic devices using a hybrid electron beam induced etching (EBIE) and reactive ion etching (RIE) technique. We highlight the shortcomings and benefits of RIE and EBIE and demonstrate the utility of the hybrid approach for the fabrication of suspended and supported device structures with nanoscale features and highly vertical sidewalls. Functionality of the fabricated devices is proven by measurements of high quality cavity optical modes (Q~1500). Our nanofabrication approach constitutes an advance towards an integrated, monolithic quantum photonics platform based on hBN and other layered vdW materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا