Do you want to publish a course? Click here

Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale

133   0   0.0 ( 0 )
 Added by Atilim Gunes Baydin
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Probabilistic programming languages (PPLs) are receiving widespread attention for performing Bayesian inference in complex generative models. However, applications to science remain limited because of the impracticability of rewriting complex scientific simulators in a PPL, the computational cost of inference, and the lack of scalable implementations. To address these, we present a novel PPL framework that couples directly to existing scientific simulators through a cross-platform probabilistic execution protocol and provides Markov chain Monte Carlo (MCMC) and deep-learning-based inference compilation (IC) engines for tractable inference. To guide IC inference, we perform distributed training of a dynamic 3DCNN--LSTM architecture with a PyTorch-MPI-based framework on 1,024 32-core CPU nodes of the Cori supercomputer with a global minibatch size of 128k: achieving a performance of 450 Tflop/s through enhancements to PyTorch. We demonstrate a Large Hadron Collider (LHC) use-case with the C++ Sherpa simulator and achieve the largest-scale posterior inference in a Turing-complete PPL.

rate research

Read More

We consider the problem of Bayesian inference in the family of probabilistic models implicitly defined by stochastic generative models of data. In scientific fields ranging from population biology to cosmology, low-level mechanistic components are composed to create complex generative models. These models lead to intractable likelihoods and are typically non-differentiable, which poses challenges for traditional approaches to inference. We extend previous work in inference compilation, which combines universal probabilistic programming and deep learning methods, to large-scale scientific simulators, and introduce a C++ based probabilistic programming library called CPProb. We successfully use CPProb to interface with SHERPA, a large code-base used in particle physics. Here we describe the technical innovations realized and planned for this library.
Pyro is a probabilistic programming language built on Python as a platform for developing advanced probabilistic models in AI research. To scale to large datasets and high-dimensional models, Pyro uses stochastic variational inference algorithms and probability distributions built on top of PyTorch, a modern GPU-accelerated deep learning framework. To accommodate complex or model-specific algorithmic behavior, Pyro leverages Poutine, a library of composable building blocks for modifying the behavior of probabilistic programs.
We introduce a method for using deep neural networks to amortize the cost of inference in models from the family induced by universal probabilistic programming languages, establishing a framework that combines the strengths of probabilistic programming and deep learning methods. We call what we do compilation of inference because our method transforms a denotational specification of an inference problem in the form of a probabilistic program written in a universal programming language into a trained neural network denoted in a neural network specification language. When at test time this neural network is fed observational data and executed, it performs approximate inference in the original model specified by the probabilistic program. Our training objective and learning procedure are designed to allow the trained neural network to be used as a proposal distribution in a sequential importance sampling inference engine. We illustrate our method on mixture models and Captcha solving and show significant speedups in the efficiency of inference.
Affective Computing is a rapidly growing field spurred by advancements in artificial intelligence, but often, held back by the inability to translate psychological theories of emotion into tractable computational models. To address this, we propose a probabilistic programming approach to affective computing, which models psychological-grounded theories as generative models of emotion, and implements them as stochastic, executable computer programs. We first review probabilistic approaches that integrate reasoning about emotions with reasoning about other latent mental states (e.g., beliefs, desires) in context. Recently-developed probabilistic programming languages offer several key desidarata over previous approaches, such as: (i) flexibility in representing emotions and emotional processes; (ii) modularity and compositionality; (iii) integration with deep learning libraries that facilitate efficient inference and learning from large, naturalistic data; and (iv) ease of adoption. Furthermore, using a probabilistic programming framework allows a standardized platform for theory-building and experimentation: Competing theories (e.g., of appraisal or other emotional processes) can be easily compared via modular substitution of code followed by model comparison. To jumpstart adoption, we illustrate our points with executable code that researchers can easily modify for their own models. We end with a discussion of applications and future directions of the probabilistic programming approach.
The heterogeneity in recently published knowledge graph embedding models implementations, training, and evaluation has made fair and thorough comparisons difficult. In order to assess the reproducibility of previously published results, we re-implemented and evaluated 21 interaction models in the PyKEEN software package. Here, we outline which results could be reproduced with their reported hyper-parameters, which could only be reproduced with alternate hyper-parameters, and which could not be reproduced at all as well as provide insight as to why this might be the case. We then performed a large-scale benchmarking on four datasets with several thousands of experiments and 24,804 GPU hours of computation time. We present insights gained as to best practices, best configurations for each model, and where improvements could be made over previously published best configurations. Our results highlight that the combination of model architecture, training approach, loss function, and the explicit modeling of inverse relations is crucial for a models performances, and not only determined by the model architecture. We provide evidence that several architectures can obtain results competitive to the state-of-the-art when configured carefully. We have made all code, experimental configurations, results, and analyses that lead to our interpretations available at https://github.com/pykeen/pykeen and https://github.com/pykeen/benchmarking

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا