Do you want to publish a course? Click here

Topological Magnon-Phonon Hybrid Excitations in Two-Dimensional Ferromagnets with Tunable Chern Numbers

110   0   0.0 ( 0 )
 Added by Gyungchoon Go
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We theoretically investigate magnon-phonon hybrid excitations in two-dimensional ferromagnets. The bulk bands of hybrid excitations, which are referred to as magnon-polarons, are analytically shown to be topologically nontrivial, possessing finite Chern numbers. We also show that the Chern numbers of magnon-polaron bands and the number of band-crossing lines can be manipulated by an external magnetic field. For experiments, we propose to use the thermal Hall conductivity as a probe of the finite Berry curvatures of magnon-polarons. Our results show that a simple ferromagnet on a square lattice supports topologically nontrivial magnon-polarons, generalizing topological excitations in conventional magnetic systems.



rate research

Read More

115 - Bowen Ma , Gregory A. Fiete 2021
We theoretically study magnon-phonon hybrid excitations (magnon-polarons) in two-dimensional antiferromagnets on a honeycomb lattice. With an in-plane Dzyaloshinskii-Moriya interaction (DMI) allowed from mirror symmetry breaking from phonons, we find non-trivial Berry curvature around the anti-crossing rings among magnon and both optical and acoustic phonon bands, which gives rise to finite Chern numbers. We show that the Chern numbers of the magnon-polaron bands can be manipulated by changing the magnetic field direction or strength. We evaluate the thermal Hall conductivity reflecting the non-trivial Berry curvatures of magnon-polarons and propose a valley Hall effect resulting from spin-induced chiral phonons as a possible experimental signature. Our study complements prior work on magnon-phonon hybridized systems without optical phonons and suggests possible applications in spin caloritronics with topological magnons and chiral phonons.
Topological magnons are bosonic analogues of topological fermions in electronic systems. They have been studied extensively by theory but rarely realized by experiment. Here, by performing inelastic neutron scattering measurements on single crystals of a two-dimensional ferromagnet CrBr$_3$, which was classified as Dirac magnon semimetal featured by the linear bands crossing at the Dirac points, we fully map out the magnetic excitation spectra, and reveal that there is an apparent gap of $sim$3.5~meV between the acoustic and optical branches of the magnons at the K point. By collaborative efforts between experiment and theoretical calculations using a five-orbital Hubbard model obtained from first-principles calculations to derive the exchange parameters, we find that a Hamiltonian with Heisenberg exchange interactions, next-nearest-neighbor Dzyaloshinskii-Moriya (DM) interaction, and single-ion anisotropy is more appropriate to describe the system. Calculations using the model show that the lower and upper magnon bands separated by the gap exhibit Chern numbers of $pm1$. These results indicate that CrBr$_3$ is a topological magnon insulator, where the nontrivial gap is a result of the DM interaction.
Magnons and phonons are two fundamental neutral excitations of magnetically ordered materials which can significantly dominate the low-energy thermal properties. In this work we study the interplay of magnons and phonons in honeycomb and Kagome lattices. When the mirror reflection with respect to the magnetic ordering direction is broken, the symmetry-allowed in-plane Dzyaloshinskii-Moriya (DM) interaction will couple the magnons to the phonons and the magnon-polaron states are formed. Besides, both lattice structures also allow for an out-of-plane DM interaction rendering the uncoupled magnons to be topological. Our aim is to study the interplay of such topological magnons with phonons. We show that the hybridization between magnons and phonons can significantly redistribute the Berry curvature among the bands. Especially, we found that the topological magnon band becomes trivial while the hybridized states at lower energy acquire Berry curvature strongly peaked near the avoided crossings. As such the thermal Hall conductivity of topological magnons shows significant changes due to coupling to the phonons.
We address the theory of magnon-phonon interactions and compute the corresponding quasi-particle and transport lifetimes in magnetic insulators with focus on yttrium iron garnet at intermediate temperatures from anisotropy- and exchange-mediated magnon-phonon interactions, the latter being derived from the volume dependence of the Curie temperature. We find in general weak effects of phonon scattering on magnon transport and the Gilbert damping of the macrospin Kittel mode. The magnon transport lifetime differs from the quasi-particle lifetime at shorter wavelengths.
The bosonic analogues of topological insulators have been proposed in numerous theoretical works, but their experimental realization is still very rare, especially for spin systems. Recently, two-dimensional (2D) honeycomb van der Waals (vdW) ferromagnets have emerged as a new platform for topological spin excitations. Here, via a comprehensive inelastic neutron scattering study and theoretical analysis of the spin-wave excitations, we report the realization of topological magnon insulators in CrXTe$_3$ (X=Si, Ge) compounds. The nontrivial nature and intrinsic tunability of the gap opening at the magnon band-crossing Dirac points are confirmed, while the emergence of the corresponding in-gap topological edge states is demonstrated theoretically. The realization of topological magnon insulators with intrinsic gap-tunability in this class of remarkable 2D materials will undoubtedly lead to new and fascinating technological applications in the domain of magnonics and topological spintronics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا