Do you want to publish a course? Click here

Topological magnon insulator spin excitations in the two-dimensional ferromagnet CrBr$_3$

95   0   0.0 ( 0 )
 Added by Jinsheng Wen
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Topological magnons are bosonic analogues of topological fermions in electronic systems. They have been studied extensively by theory but rarely realized by experiment. Here, by performing inelastic neutron scattering measurements on single crystals of a two-dimensional ferromagnet CrBr$_3$, which was classified as Dirac magnon semimetal featured by the linear bands crossing at the Dirac points, we fully map out the magnetic excitation spectra, and reveal that there is an apparent gap of $sim$3.5~meV between the acoustic and optical branches of the magnons at the K point. By collaborative efforts between experiment and theoretical calculations using a five-orbital Hubbard model obtained from first-principles calculations to derive the exchange parameters, we find that a Hamiltonian with Heisenberg exchange interactions, next-nearest-neighbor Dzyaloshinskii-Moriya (DM) interaction, and single-ion anisotropy is more appropriate to describe the system. Calculations using the model show that the lower and upper magnon bands separated by the gap exhibit Chern numbers of $pm1$. These results indicate that CrBr$_3$ is a topological magnon insulator, where the nontrivial gap is a result of the DM interaction.



rate research

Read More

We theoretically investigate magnon-phonon hybrid excitations in two-dimensional ferromagnets. The bulk bands of hybrid excitations, which are referred to as magnon-polarons, are analytically shown to be topologically nontrivial, possessing finite Chern numbers. We also show that the Chern numbers of magnon-polaron bands and the number of band-crossing lines can be manipulated by an external magnetic field. For experiments, we propose to use the thermal Hall conductivity as a probe of the finite Berry curvatures of magnon-polarons. Our results show that a simple ferromagnet on a square lattice supports topologically nontrivial magnon-polarons, generalizing topological excitations in conventional magnetic systems.
The low-temperature magnetic excitations of the two-dimensional spin-5/2 square-lattice Heisenberg antiferromagnet Rb2MnF4 have been probed using pulsed inelastic neutron scattering. In addition to dominant sharp peaks identified with one-magnon excitations, a relatively weak continuum scattering is also observed at higher energies. This is attributed to neutron scattering by pairs of magnons and the observed intensities are consistent with predictions of spin wave theory.
The bosonic analogues of topological insulators have been proposed in numerous theoretical works, but their experimental realization is still very rare, especially for spin systems. Recently, two-dimensional (2D) honeycomb van der Waals (vdW) ferromagnets have emerged as a new platform for topological spin excitations. Here, via a comprehensive inelastic neutron scattering study and theoretical analysis of the spin-wave excitations, we report the realization of topological magnon insulators in CrXTe$_3$ (X=Si, Ge) compounds. The nontrivial nature and intrinsic tunability of the gap opening at the magnon band-crossing Dirac points are confirmed, while the emergence of the corresponding in-gap topological edge states is demonstrated theoretically. The realization of topological magnon insulators with intrinsic gap-tunability in this class of remarkable 2D materials will undoubtedly lead to new and fascinating technological applications in the domain of magnonics and topological spintronics.
We present the detailed inelastic neutron scattering measurements of the noncollinear antiferromagnet Mn$_3$Ge. Time-of-flight and triple-axis spectroscopy experiments were conducted at the temperature of 6~K, well below the high magnetic ordering temperature of 370~K. The magnetic excitations have a 5-meV gap and display an anisotropic dispersive mode reaching $simeq 90$~meV at the boundaries of the magnetic Brillouin zone. The spectrum at the zone center shows two additional excitations that demonstrate characteristics of both magnons and phonons. The textit{ab initio} lattice-dynamics calculations show that these can be associated with the magnon-polaron modes resulting from the hybridization of the spin fluctuations and the low-energy optical phonons. The observed magnetoelastic coupling agrees with the previously found negative thermal expansion in this compound and resembles the features reported in the spectroscopic studies of other antiferromagnets with the similar noncollinear spin structures.
The search for topological spin excitations in recently discovered two-dimensional (2D) van der Waals (vdW) magnetic materials is important because of their potential applications in dissipation-less spintronics. In the 2D vdW ferromagnetic (FM) honeycomb lattice CrI$_3$(T$_C$= 61 K), acoustic and optical spin waves were found to be separated by a gap at the Dirac points. The presence of such a gap is a signature of topological spin excitations if it arises from the next nearest neighbor(NNN) Dzyaloshinskii-Moriya (DM) or bond-angle dependent Kitaev interactions within the Cr honeycomb lattice. Alternatively, the gap is suggested to arise from an electron correlation effect not associated with topological spin excitations. Here we use inelastic neutron scattering to conclusively demonstrate that the Kitaev interactions and electron correlation effects cannot describe spin waves, Dirac gap and their in-plane magnetic field dependence. Our results support the DM interactions being the microscopic origin of the observed Dirac gap. Moreover, we find that the nearest neighbor (NN) magnetic exchange interactions along the axis are antiferromagnetic (AF)and the NNN interactions are FM. Therefore, our results unveil the origin of the observedcaxisAF order in thin layers of CrI$_3$, firmly determine the microscopic spin interactions in bulk CrI$_3$, and provide a new understanding of topology-driven spin excitations in 2D vdW magnets.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا