Do you want to publish a course? Click here

Long-time asymptotics for evolutionary crystal dislocation models

66   0   0.0 ( 0 )
 Added by Matteo Cozzi
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We consider a family of evolution equations that generalize the Peierls-Nabarro model for crystal dislocations. They can be seen as semilinear parabolic reaction-diffusion equations in which the diffusion is regulated by a fractional Laplace operator of order $2 s in (0, 2)$ acting in one space dimension and the reaction is determined by a $1$-periodic multi-well potential. We construct solutions of these equations that represent the typical propagation of $N ge 2$ equally oriented dislocations of size $1$. For large times, the dislocations occur around points that evolve according to a repulsive dynamical system. When $s in (1/2, 1)$, these solutions are shown to be asymptotically stable with respect to odd perturbations.



rate research

Read More

This study is devoted to the long-term behavior of nucleation, growth and fragmentation equations, modeling the spontaneous formation and kinetics of large polymers in a spatially homogeneous and closed environment. Such models are, for instance, commonly used in the biophysical community in order to model in vitro experiments of fibrillation. We investigate the interplay between four processes: nucleation, polymeriza-tion, depolymerization and fragmentation. We first revisit the well-known Lifshitz-Slyozov model, which takes into account only polymerization and depolymerization, and we show that, when nucleation is included, the system goes to a trivial equilibrium: all polymers fragmentize, going back to very small polymers. Taking into account only polymerization and fragmentation, modeled by the classical growth-fragmentation equation, also leads the system to the same trivial equilibrium, whether or not nucleation is considered. However, also taking into account a depolymer-ization reaction term may surprisingly stabilize the system, since a steady size-distribution of polymers may then emerge, as soon as polymeriza-tion dominates depolymerization for large sizes whereas depolymerization dominates polymerization for smaller ones-a case which fits the classical assumptions for the Lifshitz-Slyozov equations, but complemented with fragmentation so that Ostwald ripening does not happen.
215 - C. Charlier , J. Lenells , 2020
We consider the initial-value problem for the ``good Boussinesq equation on the line. Using inverse scattering techniques, the solution can be expressed in terms of the solution of a $3 times 3$-matrix Riemann-Hilbert problem. We establish formulas for the long-time asymptotics of the solution by performing a Deift-Zhou steepest descent analysis of a regularized version of this Riemann-Hilbert problem.
In this paper, we study the long-time dynamics and stability properties of the sine-Gordon equation $$f_{tt}-f_{xx}+sin f=0.$$ Firstly, we use the nonlinear steepest descent for Riemann-Hilbert problems to compute the long-time asymptotics of the solutions to the sine-Gordon equation whose initial condition belongs to some weighted Sobolev spaces. Secondly, we study the asymptotic stability of the sine-Gordon equation. It is known that the obstruction to the asymptotic stability of the sine-Gordon equation in the energy space is the existence of small breathers which is also closely related to the emergence of wobbling kinks. Combining the long-time asymptotics and a refined approximation argument, we analyze the asymptotic stability properties of the sine-Gordon equation in weighted energy spaces. Our stability analysis gives a criterion for the weight which is sharp up to the endpoint so that the asymptotic stability holds.
We analyze the long-time asymptotics for the Degasperis--Procesi equation on the half-line. By applying nonlinear steepest descent techniques to an associated $3 times 3$-matrix valued Riemann--Hilbert problem, we find an explicit formula for the leading order asymptotics of the solution in the similarity region in terms of the initial and boundary values.
397 - Weikang Xun , Engui Fan 2021
The Sasa-Satsuma equation with $3 times 3 $ Lax representation is one of the integrable extensions of the nonlinear Schr{o}dinger equation. In this paper, we consider the Cauchy problem of the Sasa-Satsuma equation with generic decaying initial data. Based on the Rieamnn-Hilbert problem characterization for the Cauchy problem and the $overline{partial}$-nonlinear steepest descent method, we find qualitatively different long time asymptotic forms for the Sasa-Satsuma equation in three solitonic space-time regions: (1) For the region $x<0, |x/t|=mathcal{O}(1)$, the long time asymptotic is given by $$q(x,t)=u_{sol}(x,t| sigma_{d}(mathcal{I})) + t^{-1/2} h + mathcal{O} (t^{-3/4}). $$ in which the leading term is $N(I)$ solitons, the second term the second $t^{-1/2}$ order term is soliton-radiation interactions and the third term is a residual error from a $overlinepartial$ equation. (2) For the region $ x>0, |x/t|=mathcal{O}(1)$, the long time asymptotic is given by $$ u(x,t)= u_{sol}(x,t| sigma_{d}(mathcal{I})) + mathcal{O}(t^{-1}).$$ in which the leading term is $N(I)$ solitons, the second term is a residual error from a $overlinepartial$ equation. (3) For the region $ |x/t^{1/3}|=mathcal{O}(1)$, the Painleve asymptotic is found by $$ u(x,t)= frac{1}{t^{1/3}} u_{P} left(frac{x}{t^{1/3}} right) + mathcal{O} left(t^{2/(3p)-1/2} right), qquad 4<p < infty.$$ in which the leading term is a solution to a modified Painleve $mathrm{II}$ equation, the second term is a residual error from a $overlinepartial$ equation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا