We analyze the long-time asymptotics for the Degasperis--Procesi equation on the half-line. By applying nonlinear steepest descent techniques to an associated $3 times 3$-matrix valued Riemann--Hilbert problem, we find an explicit formula for the leading order asymptotics of the solution in the similarity region in terms of the initial and boundary values.
We consider the initial-value problem for the ``good Boussinesq equation on the line. Using inverse scattering techniques, the solution can be expressed in terms of the solution of a $3 times 3$-matrix Riemann-Hilbert problem. We establish formulas for the long-time asymptotics of the solution by performing a Deift-Zhou steepest descent analysis of a regularized version of this Riemann-Hilbert problem.
The Degasperis-Procesi equation with self-consistent sources(DPESCS) is derived. The Lax representation and the conservation laws for DPESCS are constructed. The peakon solution of DPESCS is obtained.
The Degasperis-Procesi equation can be derived as a member of a one-parameter family of asymptotic shallow water approximations to the Euler equations with the same asymptotic accuracy as that of the Camassa-Holm equation. In this paper, we study the orbital stability problem of the peaked solitons to the Degasperis-Procesi equation on the line. By constructing a Liapunov function, we prove that the shapes of these peakon solitons are stable under small perturbations.
We derive asymptotic formulas for the solution of the derivative nonlinear Schrodinger equation on the half-line under the assumption that the initial and boundary values lie in the Schwartz class. The formulas clearly show the effect of the boundary on the solution. The approach is based on a nonlinear steepest descent analysis of an associated Riemann-Hilbert problem.
The Degasperis-Procesi equation is an approximating model of shallow-water wave propagating mainly in one direction to the Euler equations. Such a model equation is analogous to the Camassa-Holm approximation of the two-dimensional incompressible and irrotational Euler equations with the same asymptotic accuracy, and is integrable with the bi-Hamiltonian structure. In the present study, we establish existence and spectral stability results of localized smooth solitons to the Degasperis-Procesi equation on the real line. The stability proof relies essentially on refined spectral analysis of the linear operator corresponding to the second-order variational derivative of the Hamiltonian of the Degasperis-Procesi equation.
A. Boutet de Monvel
,J. Lenells
,D. Shepelsky
.
(2015)
.
"Long-time asymptotics for the Degasperis-Procesi equation on the half-line"
.
Jonatan Lenells
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا