Do you want to publish a course? Click here

Long time and Painleve-type asymptotics for the Sasa-Satsuma equation in solitonic space time regions

398   0   0.0 ( 0 )
 Added by Engui Fan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Sasa-Satsuma equation with $3 times 3 $ Lax representation is one of the integrable extensions of the nonlinear Schr{o}dinger equation. In this paper, we consider the Cauchy problem of the Sasa-Satsuma equation with generic decaying initial data. Based on the Rieamnn-Hilbert problem characterization for the Cauchy problem and the $overline{partial}$-nonlinear steepest descent method, we find qualitatively different long time asymptotic forms for the Sasa-Satsuma equation in three solitonic space-time regions: (1) For the region $x<0, |x/t|=mathcal{O}(1)$, the long time asymptotic is given by $$q(x,t)=u_{sol}(x,t| sigma_{d}(mathcal{I})) + t^{-1/2} h + mathcal{O} (t^{-3/4}). $$ in which the leading term is $N(I)$ solitons, the second term the second $t^{-1/2}$ order term is soliton-radiation interactions and the third term is a residual error from a $overlinepartial$ equation. (2) For the region $ x>0, |x/t|=mathcal{O}(1)$, the long time asymptotic is given by $$ u(x,t)= u_{sol}(x,t| sigma_{d}(mathcal{I})) + mathcal{O}(t^{-1}).$$ in which the leading term is $N(I)$ solitons, the second term is a residual error from a $overlinepartial$ equation. (3) For the region $ |x/t^{1/3}|=mathcal{O}(1)$, the Painleve asymptotic is found by $$ u(x,t)= frac{1}{t^{1/3}} u_{P} left(frac{x}{t^{1/3}} right) + mathcal{O} left(t^{2/(3p)-1/2} right), qquad 4<p < infty.$$ in which the leading term is a solution to a modified Painleve $mathrm{II}$ equation, the second term is a residual error from a $overlinepartial$ equation.



rate research

Read More

We investigate the long time asymptotics for the Cauchy problem of the defocusing modified Kortweg-de Vries (mKdV) equation with finite density initial data in different solitonic regions begin{align*} &q_t(x,t)-6q^2(x,t)q_{x}(x,t)+q_{xxx}(x,t)=0, quad (x,t)inmathbb{R}times mathbb{R}^{+}, &q(x,0)=q_{0}(x), quad lim_{xrightarrowpminfty}q_{0}(x)=pm 1, end{align*} where $q_0mp 1in H^{4,4}(mathbb{R})$.Based on the spectral analysis of the Lax pair, we express the solution of the mKdV equation in terms of a Riemann-Hilbert problem. In our previous article, we have obtained long time asymptotics and soliton resolutions for the mKdV equation in the solitonic region $xiin(-6,-2)$ with $xi=frac{x}{t}$.In this paper, we calculate the asymptotic expansion of the solution $q(x,t)$ for the solitonic region $xiin(-varpi,-6)cup(-2,varpi)$ with $ 6 < varpi<infty$ being an arbitrary constant.For $-varpi<xi<-6$, there exist four stationary phase points on jump contour, and the asymptotic approximations can be characterized with an $N$-soliton on discrete spectrums and a leading order term $mathcal{O}(t^{-1/2})$ on continuous spectrum up to a residual error order $mathcal{O}(t^{-3/4})$. For $-2<xi<varpi$, the leading term of asymptotic expansion is described by the soliton solution and the error order $mathcal{O}(t^{-1})$ comes from a $bar{partial}$-problem. Additionally, asymptotic stability can be obtained.
113 - Lin Huang , Jonatan Lenells 2019
We consider the initial-value problem for the Sasa-Satsuma equation on the line with decaying initial data. Using a Riemann-Hilbert formulation and steepest descent arguments, we compute the long-time asymptotics of the solution in the sector $|x| leq M t^{1/3}$, $M$ constant. It turns out that the asymptotics can be expressed in terms of the solution of a modified Painleve II equation. Whereas the standard Painleve II equation is related to a $2 times 2$ matrix Riemann-Hilbert problem, this modified Painleve II equation is related to a $3 times 3$ matrix Riemann--Hilbert problem.
The long-time asymptotic behavior of solutions to the focusing nonlinear Schrodinger (NLS) equation on the line with symmetric, nonzero boundary conditions at infinity is studied in the case of initial conditions that allow for the presence of discrete spectrum. The results of the analysis provide the first rigorous characterization of the nonlinear interactions between solitons and the coherent oscillating structures produced by localized perturbations in a modulationally unstable medium. The study makes crucial use of the inverse scattering transform for the focusing NLS equation with nonzero boundary conditions, as well as of the nonlinear steepest descent method of Deift and Zhou for oscillatory Riemann-Hilbert problems. Previously, it was shown that in the absence of discrete spectrum the $xt$-plane decomposes asymptotically in time into two types of regions: a left far-field region and a right far-field region, where to leading order the solution equals the condition at infinity up to a phase shift, and a central region where the asymptotic behavior is described by slowly modulated periodic oscillations. Here, it is shown that in the presence of a conjugate pair of discrete eigenvalues in the spectrum a similar coherent oscillatory structure emerges but, in addition, three different interaction outcomes can arise depending on the precise location of the eigenvalues: (i) soliton transmission, (ii) soliton trapping, and (iii) a mixed regime in which the soliton transmission or trapping is accompanied by the formation of an additional, nondispersive localized structure akin to a soliton-generated wake. The soliton-induced position and phase shifts of the oscillatory structure are computed, and the analytical results are validated by a set of accurate numerical simulations.
215 - C. Charlier , J. Lenells , 2020
We consider the initial-value problem for the ``good Boussinesq equation on the line. Using inverse scattering techniques, the solution can be expressed in terms of the solution of a $3 times 3$-matrix Riemann-Hilbert problem. We establish formulas for the long-time asymptotics of the solution by performing a Deift-Zhou steepest descent analysis of a regularized version of this Riemann-Hilbert problem.
In this paper, we study the long-time dynamics and stability properties of the sine-Gordon equation $$f_{tt}-f_{xx}+sin f=0.$$ Firstly, we use the nonlinear steepest descent for Riemann-Hilbert problems to compute the long-time asymptotics of the solutions to the sine-Gordon equation whose initial condition belongs to some weighted Sobolev spaces. Secondly, we study the asymptotic stability of the sine-Gordon equation. It is known that the obstruction to the asymptotic stability of the sine-Gordon equation in the energy space is the existence of small breathers which is also closely related to the emergence of wobbling kinks. Combining the long-time asymptotics and a refined approximation argument, we analyze the asymptotic stability properties of the sine-Gordon equation in weighted energy spaces. Our stability analysis gives a criterion for the weight which is sharp up to the endpoint so that the asymptotic stability holds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا